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Fig. 1. Clouds simulation using DCGrid. The checkerboard pattern shows the automatically adapting grid
resolution.

We introduce Dynamic Constrained Grid (DCGrid), a hierarchical and adaptive grid structure for fluid
simulation combined with a scheme for effectively managing the grid adaptations. DCGrid is designed to be
implemented on the GPU and used in high-performance simulations. Specifically, it allows us to efficiently vary
and adjust the grid resolution across the spatial domain and to rapidly evaluate local stencils and individual
cells in a GPU implementation. A special feature of DCGrid is that the control of the grid adaption is modeled
as an optimization under a constraint on the maximum available memory, which addresses the memory
limitations in GPU-based simulation. To further advance the use of DCGrid in high-performance simulations,
we complement DCGrid with an efficient scheme for approximating collisions between fluids and static solids
on cells with different resolutions. We demonstrate the effectiveness of DCGrid for smoke flows and complex
cloud simulations in which terrain-atmosphere interaction requires working with cells of varying resolution
and rapidly changing conditions. Finally, we compare the performance of DCGrid to that of alternative adaptive
grid structures.
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1 INTRODUCTION
Grid-based fluid simulations are widely used in the entertainment and advertising industries to
create detailed and physically plausible visual effects such as splashes, sprays, smoke, and fire. These
simulations require finely resolved grids to achieve the desired level of detail. In other areas, such
as the simulation of weather phenomena, high-resolution grids are needed to adequately resolve
the interaction with geometrically modeled environments in the simulation. The grid resolutions
needed for these simulations lead to high-dimensional and complex computations and therefore
place high demands on the performance of the simulation frameworks.
In this paper, we introduce Dynamic Constrained Grid (DCGrid), a novel GPU-based multigrid data
structure for high-performance fluid simulation that supports adaptive topology. Our approach
increases computational and memory savings compared to regular static grids, and requires less a
priori knowledge with respect to the temporal evolution of the solution. It respects key defining
properties and characteristic global features of the fluid flow resulting in physically plausible results.
Supporting adaptive topology, maintaining a multigrid structure, and being GPU-based sets DCGrid
apart from alternative grid data structures such as SPGrid [Setaluri et al. 2014], which is an adaptive
multigrid but not GPU-based, and GDVB [Hoetzlein 2016; Wu et al. 2018], which is GPU-based and
adaptive but does not maintain a multigrid structure.

DCGrid stores the whole simulation domain on the GPU and is designed to allow for fast execu-
tion of operations important for fluid simulation, such as accessing values at individual cells and
on local stencils. In our comparisons to CPU-based data structures, we observe a speedup of more
than an order of magnitude. As a multigrid structure, DCGrid manages a hierarchy of uniform
grids and allows for efficient access to values and stencils at different levels of the hierarchy. The
hierarchical structure of DCGrid facilitates the use of multigrid solvers for the pressure projection
in fluids simulations. Since the memory required to store grids grows quickly with their resolution,
large-scale simulations can easily exceed memory limits on the GPU. To use memory efficiently,
DCGrid is an adaptive grid structure where the grid resolution varies spatially. The uniform grids
in DCGrid’s hierarchy are all sparsely populated, so that storage demand depends on the number of
populated cells rather than the resolution of the grid. During simulations, grid topology is adapted
at each timestep in an efficient way. The grid adaption is controlled by an algorithm that optimizes
the grid topology based on the maximum available memory.
Comparisons to the alternative adaptive grid structures SPGrid and GDVB demonstrate that DCGrid
can execute stencil and streaming operations substantially faster. We extend this comparison by
benchmarking the performance of the grids on smoke simulations. Furthermore, we include a
supplementary material in which we extend the suitability of DCGrid in high-performance simula-
tion, especially real-time simulation, by proposing a scheme for the approximation of collisions
between fluids and static solids on cells with different resolutions. This scheme does not enforce
high-resolution cells at boundaries so that more cells can be used elsewhere. As an application, we
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use DCGrid in complex cloud simulations where the interaction between terrain and atmosphere
requires working with cells of varying resolution and quickly changing conditions.

In summary, we present a hierarchical, adaptive, andGPU-based grid structure for high-performance
fluid simulations and make the following main contributions:
• a memory-efficient data structure based on a hierarchy of sparsely populated uniform grids,
highly suitable for fluid simulation;
• an efficient, optimization-based, local topology adaptation method that respects memory
constraints.

In addition, we demonstrate in the supplementary material the applicability of DCGrid to complex
simulation scenarios by integrating DCGrid into a framework for meteorological simulations.

2 BACKGROUND
In this section, we review closely related work and discuss the SPGrid structure, which is the basis
for DCGrid.

2.1 Related Work
Fluid simulations solve a discretization of the Navier–Stokes equations, usually by finite differ-
ences [Foster and Metaxas 1996], and need to deal with velocity advection and pressure projection.
An unconditionally stable semi-Lagrangian scheme for solving velocity advection was introduced
in by Stam [1999] and has been the basis for grid-based fluid solvers for phenomena such as
smoke [Fedkiw et al. 2001] and water [Foster and Fedkiw 2001]. Fluid Implicit Particle (FLIP)
and Point in Cell (PIC) methods combine particle and grid representations of the fluids and solve
advection using the particles and the pressure projection on the grid [Boyd and Bridson 2012; Ferstl
et al. 2016; Zhu and Bridson 2005]. The pressure projection is in many cases the bottleneck of fluid
solvers since a large linear system needs to be solved at every time step. These systems can be solved
by the preconditioned conjugate gradient method [Bridson 2008; Foster and Fedkiw 2001]. Due to
the regular structure of the lattices, multigrid methods, which are particularly effective for large
systems, can be used to directly solve the pressure projection [Molemaker et al. 2008] or to build
effective preconditioners for conjugate gradients schemes [McAdams et al. 2010]. Multigrid solvers
are also effective for real-time fluid simulation [Chentanez and Müller 2011] and the simulation
of viscous liquids [Aanjaneya et al. 2019]. An alternative to grid-based simulations are purely
particle-based methods such as Smoothed Particle Hydrodynamics [Cornelis et al. 2014; Gissler
et al. 2019].

The structured nature of uniform grids offers benefits when used in fluid simulations, such as fast
stencil access and simple memory management. On the other hand, their uniform nature dictates a
uniform distribution of computational resources over the fluid domain. This uniform distribution is
often an inaccurate representation of the distribution of interesting features in a fluid domain (e.g.
areas with high vorticity). To simulate features of high interest in the most accurate way possible,
we would like to focus computational resources on these features. Multiple works have presented
different alternations to the uniform grid that achieve this. Losasso et al. [2004] was the first to
introduce a fluid simulation on an octree structure. Museth [2013] introduced OpenVDB, a sparse
data structure organized as a tree with a high branching factor. OpenVDB is especially suited for
simulating values at a uniform resolution. A GPU implementation of OpenVDB, GVDB has been
developed by Hoetzlein [2016]. Wu et al. [2018] developed a FLIP simulation on GVDB, capable
of simulating and rendering scenes with tens of millions of particles, where the scene topology
automatically adapts to the FLIP particles. Recently, Museth [2021] introduced NanoVDB, a port of
OpenVDB that can be instantiated in both CPU and GPU contexts. It currently only supports static
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topology and is able to perform tasks like rendering and collision handling very efficiently. Setaluri
et al. [2014] introduced SPGrid a sparse paged grid structure. They also introduce the SPGrid
pyramid, which achieves spatial adaptivity by combining multiple SPGrids in a hierarchy. SPGrid
has been used in multiple large-scale fluid simulations [Aanjaneya et al. 2017; Liu et al. 2016] and
also in an MPM context [Hu et al. 2018]. Gao et al. [2019] used a non-hierarchical, modified version
of SPGrid in a GPU context. Recently, Xiao et al. [2020] has designed an alternative approach to
adaptivity based on an Adaptive Staggered-Tilted (AST) grid. This method augments a primary
grid with a secondary, overlapping grid with tilted cells (i.e., rotated by 45◦ in 2D). By scaling each
tilted cell individually, they achieve fine-grained adaptation on a uniform grid. The secondary
grid typically imposes a runtime penalty of only a few percent. Nielsen et al. [2020] proposed an
automatic optimization-based grid refinement algorithm for smoke simulations. Their algorithm
uses a global voxel limit and runs in O(𝑛) time, with respect to the number of allocated voxels.
Because we focus on a high-performance grid structure to be implemented on the GPU, we have to
be more restrictive and use voxel limits per mipmap level, requiring a different adaptation algorithm.
The widely used application OpenFOAM includes an Adaptive Mesh Refinement (AMR) module.
The module is not yet optimization-based. Nevertheless, it has enabled simulations with improved
accuracy using less computational resources [Cooke et al. 2014; Lapointe et al. 2020].

2.2 SPGrid

Fig. 2. Example of ghost cells and
additional blocks allocated in a SP-
Grid hierarchy with an irregular do-
main. Red dashed squares indicate
required ghost cells. Blue, green and
yellow rectangles indicate allocated
blocks on different levels of the hier-
archy.

SPGrid is a data structure for sparse Cartesian grids. A SPGrid
pyramid uses a hierarchy of SPGrids to model a grid with cells
of varying resolution. It supports voxels at each hierarchy level
and thereby enables different levels of detail (LOD). SPGrid
allocates all grids in the hierarchy in virtual memory. It achieves
adaptivity by only allocating the active parts of the grids in
physical memory. To do so, SPGrid relies on specific properties
of Haswell processors.
SPGrid structures each grid in a hierarchy in blocks of cells

such that one block occupies exactly one 4KB memory page.
This results in blocks of 43 or 42 × 8 cells, depending on the
number of values simulated per cell. SPGrid allocates blocks in
virtual memory following a Morton encoding (Z-order curve)
for optimal data locality. This structure enables constant time
translations between a block’s memory address and its location
in the grid. These constant time translations allow for the effi-
cient execution of random and stencil accesses. To efficiently
compute gradients and Laplacians, SPGrid introduces ghost cells.
Let cell𝐶𝑙

𝐼
be a cell with index 𝐼 located at grid 𝑙 in the hierarchy.

Then 𝐶𝑙
𝐼
is a ghost cell when:

• 𝐶𝑙
𝐼
is not active at level 𝑙 ,

• 𝐶𝑙
𝐼
neighbors a cell that is active at level 𝑠 ≤ 𝑙 ,

• and there exists a coarse parent of𝐶𝑙
𝐼
at level 𝑙∗ > 𝑙 that is

active.
Before computing a gradient or a Laplacian, SPGrid upsamples values from coarse parent cells

into their corresponding ghost cells. With these values in place, it computes gradients and stencils
as if the grid were uniform. After performing the computations, values in the ghost cells are copied
back into their coarse parent cells. This way, all grid cells are updated without computing values
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multiple times. While ghost cells are an effective means for fast computations, they do come with a
problem. The problem is that SPGrid allocates cells in blocks. Consequently, allocating only a few
ghost cells may require the allocation of multiple complete blocks. This problem is most visible
in irregular domains. Figure 2 shows a possible SPGrid hierarchy. In this configuration, SPGrid
allocates 6 blocks for active cells. It also allocates 6 extra blocks just for ghost cells. Adapting
topology in a SPGrid hierarchy works by instantiating a new instance with the desired topology
and copying values accordingly. This workflow is necessary because some architectures are unable
to forget that memory pages have been touched.

3 DATA STRUCTURE

(a) Hierarchy of
sparse uniform grids.
Colored cells are
active.

(b) Flattened grid hierarchy
into one dense multi-
resolution grid, showing only
active cells.

Fig. 3. Two-dimensional slice of the same hierarchy
of sparsely populated uniform grids. The thicker lines
indicate block boundaries.

Grid-based fluid simulations rely on random
and stencil access for most of their operations,
including Semi-Lagrangian advection, diffu-
sion, and projection. Therefore, to achieve high-
performance simulations, our data structure
should perform well on these types of access.
The regularity of Cartesian grids gives us the
potential to perform fluid operations in parallel.
To utilize this potential, our structure should be
usable in a GPU context. Additionally, fluid sim-
ulations often operate on multiple data chan-
nels, such as densities, velocities, and auxil-
iaries and so our structure should support this.
We propose DCGrid, a data structure based

on a hierarchy of 𝐿 sparsely populated uniform
grids𝐺0, . . . ,𝐺𝐿−1 (Figure 3). To achieve cache
coherency, we store cell data in blocks. Each
block consists of 23 subblocks, which in turn
consist of 23 cells each. The resolution between
two adjacent levels in the grid hierarchy differs
by a factor of 2. Thus, a block allocated on grid 𝐺𝑙 spans the same volume as a subblock on grid
𝐺𝑙+1. As this scaling factor resembles a mipmap, we call grid 𝐺𝑙 mipmap level 𝑙 .

To satisfy memory constraints, we define a global limit on the number of blocks that can be
allocated simultaneously 𝐵max. To improve read performance, we also impose a similar limits 𝐵max,𝑙

on each mipmap level 0 ≤ 𝑙 < 𝐿, such that
∑

𝑙≤0<𝐿 𝐵max,𝑙 = 𝐵max.

Random Access. DCGrid allocates blocks of cells in a linear span of memory. A simple GPU hash
table h links the position of blocks in the grid to their index in this linear memory span. Let 𝑏
be a block located at p𝑏 , then the hash used by h is the 32 bit Morton encoding [Morton 1966] of
p𝑏 = ⌊p/4⌋. This way of hashing means that a DCGrid instance can have a maximum resolution
of 211 × 211 × 210 blocks, which is equivalent to 8192 × 8192 × 4096 cells. We use a key space of
h.size = 4𝐵max,𝑙 entries for each grid 𝐺𝑙 . With this size, we can find the index of the block in the
linear memory span 𝐼𝑏 in O(1) time using a hash table lookup.
DCGrid stores data for subblocks and cells in separate linear memory spans. These memory

spans are ordered equivalently to the memory span used for block data. To illustrate this, let 𝑏
be the block stored at index 𝐼𝑏 . DCGrid stores data for the 8 subblocks contained in 𝑏 at indices
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{23𝐼𝑏, 23𝐼𝑏 + 1, . . . , 23𝐼𝑏 + (23 − 1)} in the following order:

𝐼𝑠 = 23𝐼𝑏 + 0x100
( ⌊p.𝑥

2

⌋
mod 2

)
+ 0x010

( ⌊p.𝑦
2

⌋
mod 2

)
+ 0x001

( ⌊p.𝑧
2

⌋
mod 2

)
. (1)

DCGrid stores data for the cells contained in subblock 𝑠 at indices {23𝐼𝑠 , 23𝐼𝑠 + 1, . . . , 23𝐼𝑠 + (23 − 1)}
in a similar order:

𝐼𝑐 = 23𝐼𝑠 + 0x100(p.𝑥 mod 2) + 0x010(p.𝑦 mod 2) + 0x001(p.𝑧 mod 2) . (2)

In summary, to find the index 𝐼𝑐 of cell 𝑐 located at position p in grid 𝐺𝑙 , we perform three
transformations. We first find the index 𝐼𝑏 of the block containing 𝑐 using a hash table lookup.
Then, we find the index 𝐼𝑠 of the subblock containing 𝑐 using a simple transformation. Finally, we
find the index 𝐼𝑐 of cell 𝑐 using a similar transformation.

12912812812812869

5815141110111
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507632109
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45444140

39383534

37363332

93928988
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535249
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23221918
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797875
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717067

31

74

72

66

686564

Fig. 4. Apron cell indices as calcu-
lated for the central block.

Stencil Access. The stencil operations that we focus on are
stencils with dimension 33. The logical ordering of cells within
blocks makes it trivial to compute stencils for cells in the in-
terior of blocks. Computing stencils for cells on the border of
blocks, however, requires accessing neighboring blocks. Naively,
this would require multiple random access operations and thus
multiple hash table lookup operations for each stencil operation.
To more efficiently access adjacent cells in different blocks,

we pre-compute an apron of cell indices directly neighboring
each block (Figure 4). Pre-computing of apron cell indices is
performed once, during grid initialization. As the higher reso-
lution mipmap levels will be sparsely occupied, not all blocks
will have direct neighbors at the same mipmap level. We could
directly include neighbors on other mipmap levels in the apron.
Doing so would lead to a different amount of cells neighbor-
ing each block. Consequently, we get in non-uniform stencils.
Non-uniform stencil computations on a GPU might lead to thread divergence, which reduces their
efficiency. Therefore, we want to avoid non-uniform stencils. Instead, we implement an approach
that retains the benefit of uniform stencils and works with sparsely occupied grids. To do so, we
restrict the layout of the grids in the hierarchy using two rules:
(1) For mipmap levels 0 ≤ 𝑙 < 𝐿 − 1 and for each cell 𝑐 ∈ 𝐺𝑙 , there must exist a parent cell 𝑐𝑝 at

position 2⌊p/2⌋ on grid 𝐺𝑙+1. We also call 𝑐 a child cell of 𝑐𝑝 .
(2) The lowest resolution grid, 𝐺𝐿−1, should be densely allocated.

These restrictions ensure that𝐺0 ⊆ 𝐺1 ⊆ · · · ⊆ 𝐺𝐿−2 ⊆ 𝐺𝐿−1. To compute the apron cell indices for
a block at grid 𝐺𝑙 , we iterate over all positions directly adjacent to that block. At each position p, if
p lies inside the domain, we search for a cell in 𝐺𝑙 first. If this cell does not exist, we search for
a cell at position p in increasingly coarser mipmap levels. As 𝐺𝐿−1 covers the complete domain,
this process always finds a cell at some level. We now treat all cell indices in aprons as if they
originate from the same mipmap level. This process yields a uniform, and thus a performant stencil
operation.

Restriction and Prolongation. By restricting the layout of the grid hierarchy, most of the do-
main will be covered by multiple cells. Specifically, if cell 𝑐 covers point p in the domain, then
its parent cell also covers that point. Performing fluid simulation operations on multiple cells
covering the same point would be a waste of computational resources. Therefore operations are
only performed on the highest resolution cell that covers any point. This cell is called active.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 3. Publication date: May 2022.



DCGrid 3:7

(a) Restriction operation
updating cell values by av-
eraging the values of their
fine child cells.

(b) Prolongation of re-
stricted values back to
high-resolution grid.

Fig. 5. Restriction and prolongation operations per-
formed after each other on the same data.

Any cell that is the parent cell of another cell
is called inactive. To get the correct values in
the inactive cells, we perform a simple down-
sampling routine called restriction (Figure 5a).
Starting at mipmap level 𝐺0, we average the
values of cells sharing the same coarse parent
cell. We store this average in the parent cell
and repeat on each coarser grid until all cells
have values. The inverse operation of restric-
tion is prolongation (Figure 5b). This operation
traverses the grid hierarchy in the other direc-
tion, from low to high resolution, and transfers
values from parent cells into their children.

4 TOPOLOGY ADAPTATION
We developed an optimization-based local
topology adaptation method. Our method dis-
tributes computing power and memory usage
over the simulation domain by distributing ac-
tive cells over mipmap levels. In particular, our method distributes active cells according to each
cell’s priority score 𝑝 (𝑐), such that active cells on higher-resolution mipmap levels have higher
priority scores than active cells on lower-resolution levels. In other words:

∀𝑐1, 𝑐2 : (is_active(𝑐1) ∧ is_active(𝑐2) ∧ mipmap_level(𝑐1) < mipmap_level(𝑐2))
⇔ 𝑝 (𝑐1) > 𝑝 (𝑐2) .

(3)

When distributing cells, we need to account for the block limit 𝐵max,𝑙 per mipmap level and the
restricted grid layout. A cell’s priority score 𝑝 (𝑐) can be any user-defined function. Potentially
useful priority scores include the velocity gradient, proximity to the camera, or proximity to a
boundary. Unless stated otherwise, we use the vorticity magnitude of a cell as its priority score.

Basic Operations. Before introducing our algorithm for topology adaptation, we need to establish
the basic operations that constitute the algorithm: subblock refinement and block coarsening. To

(a) Uniform,
16.8M cells.

(b) DCGrid,
16.8M active cells.

(c) DCGrid,
4.2M active cells.

(d) DCGrid,
840K active cells.

(e) DCGrid,
168K active cells.

Fig. 6. Smoke simulation run for 150 timesteps under different memory limits. Effective resolution is 2563.
Each checkerboard square represents one cell.
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refine subblock 𝑠 located at mipmap level 𝐺𝑙 , we insert a new block 𝑏refined at mipmap level 𝐺𝑙−1
spanning the same volume as 𝑠 . This insertion uses CUDA atomic operations (atomicCAS) to allow
for parallel insertions. When a block already exists at position p, or if there is no space left at
mipmap level 𝐺𝑙−1, the operation is canceled. Otherwise, subblock 𝑠 is marked as inactive, and
block 𝑏refined is marked as active and positioned in the grid. Finally, the values in block 𝑏refined
are initialized by prolonging the values from subblock 𝑠 .

0 0
0 1

0 0
2 0

3 2
2 1

1 0
0 0

0 0
0 1

0 0
2 0

3 2
2 1

1 0
0 0

Fig. 7. Adaptation setup. First, a
coarse grid is initialized. Then after
each timestep, the subblocks with
the highest priority scores are re-
fined, until the finest grid is allo-
cated.

To coarsen a block𝑏 located at mipmap level𝐺𝑙 , we first check
if block 𝑏 is active. If not, then there exists a higher-resolution
block at the same position. In this case, we cannot delete 𝑏, as
that would leave a gap in the grid hierarchy. If 𝑏 is active, we
look up the subblock 𝑠 that resides at mipmap level 𝑙 + 1 at the
same position. Because of our restricted grid hierarchy layout,
𝑠 always exists when 𝑙 < 𝐿 − 1. We mark 𝑠 as active and delete 𝑏
from the hash table. Again, this hash table deletion uses CUDA
atomic operations and can be run in parallel.

A hash table deletion does not clear the previously occupied
key in the hash table, leaving the key unusable. After many
insertions and deletions, this will slow down lookups in the hash
table. Eventually, the hash table will run out of space. To ensure
that the hash table performs well, we can refill it periodically.
The time required for refilling is insignificant compared to the total time topology adaptation takes.

0 0
0 4

8 6
4 5

2 4
1 3

5 0
0 0

0 0
0 4

8 6
4 5

2 4
1 3

5 0
0 0

Fig. 8. Block re-arrangement. After
each timestep, for each adjacent pair
of grids in the hierarchy is consid-
ered. Fine blocks with low prior-
ity scores are matched with coarse
subblocks with high priority scores.
Then the fine blocks with low scores
moved to the locations of the coarse
subblocks with high scores.

Adaptation Setup. To initialize a DCGrid instance with 𝐿

mipmap levels, we define a global block limit 𝐵max and use that to
determine the block limits 𝐵max,𝑙 for each level 𝑙 ∈ {0, . . . , 𝐿 − 1}.
In our experiments we used the following division:
(1) Set the remaining block budget 𝐵 to be 𝐵max.
(2) For each hierarchy level grid 𝑙 = 𝐿 − 1 down to 0:
(3) Set 𝐵max,𝑙 to the smallest value of 𝐵/(𝑙 + 1) or the number

of blocks required to densely allocate 𝐺𝑙 .
(4) Subtract 𝐵max,𝑙 from the remaining budget 𝐵.

With this division, some mipmap levels are always densely allo-
cated. In particular, let 𝐺0, . . . ,𝐺𝐿−1 be a DCGrid instance with
𝐿 mipmap levels, then there is a mipmap level 𝑙 , so that for each
𝑙 ≤ 𝑙 ′ < 𝐿, block limit 𝐵max,𝑙 ′ is such that 𝐺𝑙 ′ can be densely
allocated. When initializing a DCGrid instance, we immediately
allocate these mipmap levels densely.
Cells on the other mipmap levels (𝐺0, . . . ,𝐺𝑙−1) are allocated

iteratively by refining subblocks from 𝐺1, . . . ,𝐺𝑙 respectively.
Let 𝐺𝑙 , 1 ≤ 𝑙 < 𝐿 − 1 be a mipmap level on which some blocks are allocated already, i.e., 𝐵𝑙 > 0. If
𝐵𝑙−1 < 𝐵max,𝑙−1, then there still space for 𝑁𝑙−1 = 𝐵max,𝑙−1 − 𝐵𝑙−1 > 0 blocks on mipmap level 𝐺𝑙−1.
We can now allocate 𝑅𝑙 = min{𝑁𝑙−1, 23𝐵𝑙 } blocks on 𝐺𝑙−1 be refining 𝑅𝑙 subblocks from 𝐺𝑙 . To
select subblocks from 𝐺𝑙 , we perform this refinement step only once after each timestep. We first
calculate the priority score of each subblock on 𝐺𝑙 using a simple CUDA kernel that averages the
priority scores of each cell in the subblock. We select the 𝑅𝑙 subblocks with the highest priority
scores for refinement. Selecting these subblocks is an instance of the 𝑘-selection problem. For this
problem, an O(𝑛) algorithms exists [Blum et al. 1973]. We solve this problem using the Quick Select
algorithm, as this has expected runtime O(𝑛) and is often faster in practice.
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Re-arrangement. In a typical fluid simulation, the distribution of values throughout the domain
changes over time. Hence, the parts of the domain that deserve the most attention also change over
time. To account for these changes, we allow for re-arrangement of blocks via Algorithm 1.
We determine which blocks should be rearranged per mipmap level 𝐺𝑙 , starting at the highest

resolution mipmap level 𝐺0. First, we calculate the priority scores of each block in 𝐺𝑙 and each
subblock in 𝐺𝑙+1 using a single CUDA kernel. We then find the set of active blocks 𝐵coarsen ⊆ 𝐺𝑙

and the set of active subblocks 𝑆refine ⊆ 𝐺𝑙+1. On the CPU, we sort 𝐵coarsen ascending and 𝑆refine
descending by their priority scores, and iterate over each pair in order. For each pair, we check if
the priority score of the block is lower than the priority score of the subblock. If this is the case,
then this pair violates our adaptation objective (Equation 3). To move closer towards fulfilling the
adaptation objective, we now coarsen the block and refine the subblock. The actual coarsening and
refinement happen in parallel via a CUDA kernel.

ALGORITHM 1: Block re-arrangement.
Input: Grids 𝐺0, . . . ,𝐺𝐿−1, move limit per grid

𝑚𝑙 .
for 𝑙 = 0 . . . 𝐿 − 2 do
∀𝑠 ∈ 𝐺𝑙+1, 𝑝𝑠 ← calc_subblock_score(𝑠)
∀𝑏 ∈ 𝐺𝑙 , 𝑝𝑏 ← calc_block_score(𝑏)
𝐵coarsen ← {𝑏 ∈ 𝐺𝑙 |is_active(𝑏)}
𝑆refine ← {𝑠 ∈ 𝐺𝑙+1 |is_active(𝑠)}
partial_sortascending (𝐵un_refine,𝑚𝑙 )
partial_sortdescending (𝑆refine,𝑚𝑙 )
𝑣𝑙 ← 0
for (𝑏, 𝑠) ∈ zip(𝐵coarsen, 𝑆refine) do

if 𝑝𝑏 < 𝑝𝑠 then
coarsen(𝑏)
refine(𝑠)
𝑣𝑙 ← 𝑣𝑙 + 1

𝑚𝑙 ← next_move_limit(𝑚𝑙 , 𝑣𝑙 )

Sorting all blocks and subblocks is an ex-
pensive operation, especially as the number of
blocks grows. Optimally, we would only sort
the 𝑣𝑙 objective violating pairs. To reduce the
number of blocks and subblocks to sort, intro-
duce a move limit𝑚𝑙 , per mipmap level. Move
limit 𝑚𝑙 indicates that at most 𝑚𝑙 subblocks
can be refined and𝑚𝑙 blocks can be coarsened
at mipmap level 𝑙 in one execution of the re-
arrangement algorithm. To find the blocks and
subblocks that have to be coarsened and refined,
we now only need to find the𝑚𝑙 blocks with
the lowest priority scores and the𝑚𝑙 subblocks
with the highest priority scores. This only re-
quires partial sorting of 𝐵coarsen and 𝑆refine
up to 𝑚𝑙 elements, which can be performed
in 𝑂 (max{|𝐵coarsen |, |𝑆refine |} log𝑚𝑙 ) time.

To find reasonable limits𝑚𝑙 , we make three
observations:

• If𝑚𝑙 > 𝑣𝑙 , we sort more blocks and subblocks than necessary, which is a waste of time.
• If𝑚𝑙 < 𝑣𝑙 , we sort fewer blocks and subblocks than there are objective violating pairs. Doing
so leaves some objective violating pairs unchanged, which is undesirable.
• The number of objective violating pairs 𝑣𝑙 in one timestep is often similar to 𝑣𝑙 in the next
timestep.

From these observations, we conclude that the move limit𝑚𝑙 should be larger than the number
of objective violating pairs 𝑣𝑙 , but the difference𝑚𝑙 − 𝑣𝑙 should be as small as possible. We also
see that we can predict reasonable limits𝑚𝑙 for the next timestep using the number of objective
violating pairs 𝑣𝑙 in the current timestep. In our experiments, we found that the simple prediction
next_move_limit(𝑚𝑙 , 𝑣𝑙 ) = max{.8𝑚𝑙 , 1.5𝑣𝑙 } gave good results.
After the re-arrangement step, we ensure that all apron cell indices point to the correct cells

again. To do so, we calculate the apron cell indices for each newly inserted block and refresh the
apron cell indices that pointed to refined or coarsened blocks.
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(a) Domain setup. (b) DCGrid (5%). (c) DCGrid (10%). (d) DCGrid (25%). (e) Uniform.

(f) DCGrid (10%). (g) DCGrid (30%). (h) DCGrid (50%). (i) DCGrid (80%). (j) Uniform grid.

Fig. 9. Smoke flow performed on a uniform grid and on DCGrid with various block limits and thus different
amounts of active cells. All percentages are relative to their respective values in the simulation on the uniform
grid.

5 RESULTS
In this section, we present results evaluating our simulation framework and comparing it to other
approaches. We evaluate the distinct features of DCGrid, compare DCGrid against a uniform grid
and benchmark the performance of DCGrid against SPGrid and GVDB on single kernels and using
end-to-end tests. We implemented DCGrid and our simulation framework on the GPU using CUDA.
Unless stated otherwise, we performed all simulations on an NVIDIA R○ GeForce GTX 1070.

Table 1. Timings and memory usage of experiments included in this work.

Scene Structure Domain Memory Floats Avg. Time / Timestep (ms)
(MB) / Cell Advect Project Topology Render Rest Total

Fig. 6a Uniform 2563 537 8 34 24 – 2.0 16 76
Fig. 6b DCGrid 2563 1177 8 50 39 8.6 9.5 22 130
Fig. 6c DCGrid 2563 294 8 13 9.7 7.3 12 5.7 47
Fig. 6d DCGrid 2563 59 8 3.9 2.5 2.8 10 1.8 21
Fig. 6e DCGrid 2563 12 8 1.4 0.9 1.6 7.1 1.4 12
Fig. 1 DCGrid 512 × 1282 193 17 11 4.8 6.4 25 13 60
N/A SPGrid∗ 10242 × 2048 23GB 16 26 s 525 s – ? 24 575 s
Fig. 12 DCGrid 10242 × 2048 6872 8 507 430 303 41 – 1280
Fig. 13a GVDB 2563 97 8 15 102 9.3 1.4 15 142
Fig. 13b DCGrid 2563 97 8 5.2 9.1 3.5 9.2 2.2 29

∗Data for the SPGrid result is sourced from [Setaluri et al. 2014]. Rendering time is not included. Experiments
run on an Intel Xeon E5-2670.

Topology Adaptation. To evaluate the topology adaption scheme, we compare results of four runs
of the same simulation with different memory bounds on adaptive grids of effective resolution 2563
(Figure 6). As a baseline, we also show the results obtained on the corresponding uniform grid. In
all cases, the high-resolution areas in the adaptive grids follow the smoke flow. The simulation
with the lowest cell limit (Figure 6e) allocates less than 1.5% of the cells used by the simulation on
a uniform domain (Figure 6a). Still, it faithfully captures the global features of the smoke flow. The
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highest resolution adaptive simulation (Figure 6c) uses one quarter of the cells that the non-adaptive
simulations use (Figure 6a, 6b). This adaptive simulation reproduces almost all the details visible in
the non-adaptive simulations.

Comparison to a Uniform Grid. To evaluate the performance of the adaptivity of DCGrid, we
compare memory usage and average access times against a uniform grid by performing similar
simulations in both settings. In general, fluid operations on DCGrid require extra time, because they
require pointer indirection. Also, after each update, DCGrid requires some extra time to accumulate
changed values. The apron cell indices are the main contributor to the memory overhead. Since
their size only depends on the number of cells allocated, not on the amount of data stored per cell,
the memory overhead is lower in more complex simulations.
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Fig. 10. Performance of DCGrid relative to a uniform
grid under different configurations.

Figure 10 shows plots of memory usage and the
average computation time per frame over the
number of active cells in the grid. We report
results for two types of simulations: smoke sim-
ulation with 8 floating-point channels per cell
(blue graphs) and simulations of weatherscapes
with 17 floating-point channels (red graphs).
While when densely allocated, DCGrid requires
more memory and yields slower runtimes than
a uniform grid, this changes when not all cells
are allocated. The break-even is reached when
about 50% of the cells are used for 8 channels
and about 60% for 17 channels. When 25% of the cells are used, DCGrid is about twice as fast and
requires only half of the memory space.

The number of active cells used in a simulation varies for different simulations. In Figure 9, we
show two examples that illustrate how simulations can benefit from the adaptivity of DCGrid.
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(a) Stencil operation.
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(b) Streaming operation.

Fig. 11. Performance of DCGrid compared to SPGrid
and GVDB on a stencil and streaming kernel. The
kernels are performed on a narrow-band domain con-
sisting of a spherical shell. SPGrid operations are per-
formed on an Intel i7-3820 (4 cores).

The upper row shows a simulation that is lo-
calized in the simulation domain. In this case,
DCGrid reaches a similar quality simulation us-
ing only 0.25 times as many cells as a uniform
grid would use, requiring only half the compu-
tation time and the memory that the uniform
grid requires. The lower row shows a setting in
which most of the scene is occupied by some
fluid. Even in this case, DCGrid can reach a
simulation of similar quality using fewer cells.
DCGrid reaches a similar quality simulation as
the simulation in the uniform grid using 0.5
times as many cells as the uniform grid uses,
requiring only slightly more memory and com-
putation time compared to the uniform simu-
lation. This indicates that DCGrid can be used
even in non-sparse settings without sacrificing performance or quality.

Benchmark Comparisons. We performed two benchmark tests, streaming and stencil operations,
to compare the performance of DCGrid with SPGrid [Setaluri et al. 2014] and GVDB [Hoetzlein
2016; Wu et al. 2018]. A Saxpby operation was computed for the streaming kernel and a Laplacian
for the stencil kernel. The benchmarks were performed on the same sparse domain for each data
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(a) GVDB, brick size 83. (b) DCGrid.

Fig. 13. Smoke simulation run in GVDB and DCGrid on a 2563 grid. Middle and right scene both use 97MB
memory at most.

structure. This sparse domain consists of a narrow band set of a spherical shell. Results are plotted
in Figure 11. DCGrid is faster than GVDB and SPGrid at all resolutions tested.

Fig. 12. Smoke flow along sphere, 112M cells allocated.
Domain size is 10242 × 2048, each checkerboard square
represents a 43 cells.

Comparison to SPGrid. To compare DCGrid
with SPGrid, we recreated one of the scenes
showcased in [Setaluri et al. 2014] in a best-
effort manner as not all input parameters, such
as emission velocity, were available. Also, we
used our own rendering engine, because SP-
Grid did not specify exactly how they rendered
the original scene. Our results are shown in
Figure 12. Due to limited GPU memory, we can
only allocate 112M cells in the DCGrid instance
compared to the 135M used by SPGrid. Even
with fewer cells, our automatic topology adap-
tation scheme produces a more detailed simu-
lation. Because DCGrid uses cell-centric advec-
tion, reuses temporary channels, and does not
require ghost cells, DCGrid requires only about one-third of the memory compared to SPGrid for a
similar simulation. Even when rendering time is included, the experiment with DCGrid runs about
449 times faster than the original experiment with SPGrid (Table 1). Since DCGrid and SPGrid run
on different systems, and our DCGrid experiment only uses about 82% of the cells that the SPGrid
experiment used, the performance difference might be less significant in other scenarios.

Comparison to GVDB. To compare DCGrid to GVDB end-to-end, we set up a smoke simulation
in GVDB, shown in Figure 13. Performance data is included to Table 1. In the experiment, we
used cell-centered semi-Lagrangian advection, vorticity confinement, and non-multigrid projection
using 10 Jacobi iterations for both DCGrid and GVDB. We set up GVDB such that the domain
automatically expands around the smoke, using bricks of 83 cells. To get a fair comparison between
GVDB and DCGrid, we configured the memory limit for the DCGrid instance to be equal to the
memory used by the GVDB instance. Using the same amount of memory, DCGrid allocated 1.57M
cells (of which 1.38M active cells), while GVDB allocated only 1.18M cells. Also, DCGrid performed
the fluid simulation about 4.8 times as fast as GVDB overall. We attribute a large part of the
performance difference between GVDB and DCGrid to the projection operation, where GVDB has
to synchronize its apron cells after each iteration. On advection, DCGrid performed faster than
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GVDB. We expect that DCGrid performed faster here because it samples from plain arrays, whereas
GVDB samples from textures and surfaces, which may cause overhead.

A major difference between DCGrid and GVDB is that GVDB only allocates cells on the highest
resolution. In the simulation shown, this benefits the amount of detail visible in the result. GVDB
only has to use memory for the high-resolution cells and can thus allocate more of them than
DCGrid, using the same amount of memory. As a result, it preserves some more details in the
simulation. In general, only allowing cells on the highest resolution can be a limitation for GVDB.
Due to this restriction, for example, we have to resort to a non-multigrid solver for velocity
projection.

6 CONCLUSION AND FUTUREWORK
We present a memory-efficient adaptive multigrid structure tailored for fluid simulations on the GPU
that features an optimization-based algorithm for automatic local grid refinement. Our experiments
demonstrate that compared to SPGrid and GVDB, DCGrid performs important stencil and streaming
operations faster. Moreover, performance comparisons on smoke simulation indicate the benefits
of DCGrid over SPGrid and GDVB. In supplementary material, we develop a scheme for handling
solid-fluid interactions approximately for cells of different resolutions and integrate DCGrid into a
framework for terrain atmosphere interaction.

For the design of DCGrid, we chose to manage memory explicitly. For a simpler implementation,
one could explore CUDA’s virtual memory management APIs. Using these APIs, it might be possible
to implement random access using the native memory page table instead of a GPU hash table.
The drawback of this approach could be that memory needs to be fetched more often during a
simulation. Additionally, one could explore the approach used in [Wu et al. 2018] and store cell data
in textures. Using textures could potentially improve the performance of advection and rendering,
as it would enable hardware-accelerated interpolation.

Our structure is currently limited in two ways. First, we use fixed-size blocks of 43 cells. Allowing
users to vary the block size could be beneficial to simulations. Larger blocks, for example, would
require fewer apron cell indices per cell, which would reduce memory overhead. Second, we limit
the maximum number of blocks per mipmap level. This limit does not appear to restrict the scenarios
we explored. However, one could explore using an overall block limit instead. Such a limit would
allow for more flexible grid layouts, which could help in highly dynamic scenarios.
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