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Fig. 1. Visualization of the dynamical simulation of human hair during a woman’s head shake carried out with our stiffly accurate integrator.

We present a new integration algorithm for the accurate and efficient solu-
tion of stiff elastodynamic problems governed by the second-order ordinary
differential equations of structural mechanics. Current methods have the
shortcoming that their performance is highly dependent on the numerical
stiffness of the underlying system that often leads to unrealistic behavior or
a significant loss of efficiency. To overcome these limitations, we present a
new integration method which is based on a mathematical reformulation of
the underlying differential equations, an exponential treatment of the full
nonlinear forcing operator as opposed to more standard partially implicit or
exponential approaches, and the utilization of the concept of stiff accuracy
which ensures that the efficiency of the simulations is significantly less sen-
sitive to increased stiffness. As a consequence, we are able to tremendously
accelerate the simulation of stiff systems compared to established integrators
and significantly increase the overall accuracy. The advantageous behavior
of this approach is demonstrated on a broad spectrum of complex exam-
ples like deformable bodies, textiles, bristles, and human hair. Our easily
parallelizable integrator enables more complex and realistic models to be
explored in visual computing without compromising efficiency.
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1 INTRODUCTION
For most problems, simulating dynamics more accurately invariably
means sacrificing computational efficiency. This is especially the
case when the underlying differential equations are “stiff”. Such
systems of equations are characterized by a wide range of time
scales present in their evolution. Stiffness arises when the time scale
of interest in the dynamics is much slower than the fastest modes
of the system. Stiff equations are ubiquitous in a wide range of
fields including electromagnetics, fluid dynamics, acoustics, elec-
trodynamics, molecular modeling, computerized tomography and
imaging, plasma transport, and celestial mechanics [Engquist et al.
2009]. Prominent examples in visual computing include the dynam-
ics of cloth, fibers, fluids, or solids, and their interaction with each
other.
The numerical time integration of stiff systems of differential

equations is one of the central problems in numerical analysis. The
history of this branch of numerical analysis has been dominated by
two classes of time integrators: explicit and implicit. Both types of in-
tegrators allow advancing the numerical solution along a discretized
time interval, but the numerical properties of these two classes are
fundamentally different. Explicit methods require the least amount
of computations per time step but suffer severe stability restrictions
that limit the allowable size of the time step. Implicit methods pos-
sess better stability properties and allow for accurate integration
with much larger time steps, but the increase in time step size comes
at the expense of significantly more computations required in each
time iteration. As the stiffness of the problem grows, integrating
equations explicitly over a long period of time becomes imprac-
tical and animators turn to implicit methods. However, implicit
schemes are not immune to the increase in stiffness and the amount
of computation required per time step grows correspondingly.

Recently, exponential methods emerged as a viable alternative to
implicit schemes for a number of stiff problems. A range of expo-
nential integrators have been developed including stiffly accurate
methods that are particularly suited for the integration of stiff sys-
tems. However, ideas of stiffly accurate exponential integration have
not been extensively explored in the context of visual computing
applications such as the simulation of elastodynamic systems.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 116. Publication date: July 2017.

https://doi.org/10.1145/3072959.3073706


116:2 • Michels, D.L. et al.

In this work we propose a new time integration approach to sim-
ulate elastodynamic systems. Our new time integrator for these
types of equations is comprised of three key ideas: a new mathe-
matical formulation of the problem, an exponential treatment of the
full nonlinear forcing operator, and the application of stiffly accu-
rate exponential methods optimized for adaptive Krylov projection
algorithms.

Using a broad spectrum of applications we demonstrate that the
new time integrator offers significant computational advantages
compared to current state-of-the-art techniques for simulating elas-
todynamic systems in visual computing.

2 RELATED WORK
In the realm of visual computing certain methods have been es-
tablished over the past decades to handle numerical difficulties
associated with stiff scenarios. Most algorithms are based on im-
plicit integration schemes since they usually come with artificial
dissipation which limits numerical instabilities (like energy blow-up
effects) and can therefore be used with significantly larger time step
sizes compared to simple explicit schemes [Hairer andWanner 2004].
However, excessive numerical dissipation in an implicit method can
severely impact the accuracy of the solution as well as result in a
violation of key defining properties of the underlying system as for
example the fundamental physical law of energy conservation. A
number of improvements to the integration of stiff systems arising
in visual computing, particularly elastodynamic models, have been
introduced over the past thirty years, for example by Terzopou-
los et al. [1987] (interacting deformable bodies), Baraff and Witkin
[1998], Hauth and Etzmuss [2001], Goldenthal et al. [2014] (cloth
simulation), and Bergou et al. [2008] (simulating elastic rods). Varia-
tional integrators were used [Stern and Desbrun 2006] to improve
geometric properties of the solution.
The work on time integration in visual computing most closely

related to our approach is the use of Gautschi-type integrators
[Deuflhard 1979; Gautschi 1961; Hairer and Lubich 1999; Michels
and Desbrun 2015] to improve the accuracy and efficiency of the
simulation of elastodynamic systems [Michels and Mueller 2016;
Michels et al. 2014]. Unlike Gautschi-type methods, where linear
spring forces are advanced using trigonometric functions of the
linear portion of the Jacobian, our approach involves a reformula-
tion of the problem and the advancing of the full nonlinear forcing
using exponential-like functions. It is important to note that most
of the implicit integrators as well as Gautschi-type methods devel-
oped for problems in visual computing rely on partial implicitness,
i.e. so-called implicit-explicit (IMEX) approaches [Ascher et al. 1995].
An IMEX method handles a portion of the forcing operator implic-
itly while the rest of the forcing operator is integrated explicitly
[Eberhardt et al. 2000; Hauth and Etzmuss 2001]. In our method
no partitioning of the forcing is used; instead, the full nonlinear
Jacobian is used to integrate the motion forward.

Our new approach to time integration of elastodynamic systems
is based on ideas from the field of exponential integration. Over the
past several decades exponential methods emerged as alternatives
to implicit methods in simulating large scale stiff systems. While
the first exponential integrators date back to 1960’s [Certaine 1960;
Lawson 1967; Pope 1963], a broader interest and active development

and application of these type of integrators are more recent. Re-
newed interest in exponential methods was spurred by advances
in numerical linear algebra which enabled efficient computation
of products of exponential-like functions of matrices with vectors.
A number of exponential integrators have been proposed for stiff
equations [Hochbruck and Ostermann 2006; Kassam and Trefethen
2005; Krogstad 2005; Luan and Ostermann 2014b; Tokman 2006,
2011]. In particular, the exponential propagation iterative methods
of Runge-Kutta-type (EPIRK) framework [Tokman 2006, 2011] used
in this work was developed to improve the efficiency of exponential
integrators. We focus on stiffly accurate exponential integrators
[Hochbruck and Ostermann 2005, 2006; Luan and Ostermann 2013,
2014a,b, 2016; Rainwater and Tokman 2016b] which introduce addi-
tional computational savings compared to standard techniques.
The new time integrator presented in this work offers signifi-

cant computational advantages compared to previously proposed
methods for elastodynamic systems. In the following sections, we
describe the new method and demonstrate its performance on a
number of visual computing problems.

3 TIME INTEGRATION ALGORITHM
Elastodynamic equations are routinely used in visual computing to
model the motion of objects such as cloth, fibers, and deformable
bodies. Our new time integration approach to simulate the dynam-
ics of such systems is comprised of the following three key ideas:
(i) a mathematical reformulation of the equations modeling elas-
todynamic systems which makes the problem more suitable for
exponential integration, (ii) exponential treatment of the full nonlin-
ear forcing operator as opposed to more standard partially implicit
or exponential approaches, and (iii) the use of stiffly accurate expo-
nential methods which ensures that the efficiency of the simulations
is significantly less sensitive to increased stiffness.
The novelty of our time integration approach stems from both,

the design of the algorithm and the application of the stiffly accurate
exponential schemes to large scale complex highly oscillatory sys-
tem such as the elastodynamic equations. Specifically, we construct
an exponential integrator based on the evaluation of exponential-
like functions of a full Jacobian matrix of the forcing operator. Our
new method differs from previously proposed integrators in several
important ways. We propose a reformulation of the problem (see
Sec. 3.1) which improves the structural properties of the system and
makes application of standard exponential integration using matrix
exponential-like functions more efficient. The change of variables
utilized in this reformulation has been used for modeling linear
elastic systems [Chen and Russell 1982], and more recently, it was
employed in numerical analysis for studying the error of the rational
Krylov approximations to linear second order systems [Göckler and
Grimm 2013] and for establishing connections between Gautschi-
type and splitting methods [Buchholz et al. 2017]. We utilize this
change of variables to improve the structure of the full Jacobian
matrix of the full nonlinear forcing operator. Our reformulation
enables us to employ exponential-like functions of the Jacobian
of the full nonlinear forcing operator and an efficient exponential
integrator of EPIRK-type to advance the solution forward in time.
Note that while the particular stiffly accurate EPIRK scheme we use
appeared in a recent publication [Rainwater and Tokman 2016a], its

ACM Transactions on Graphics, Vol. 36, No. 4, Article 116. Publication date: July 2017.



A Stiffly Accurate Integrator for Elastodynamic Problems • 116:3

performance has only been evaluated in the context of numerical
test problems. Our work is the first test of this new scheme on a
complex real-world application such as the elastodynamic systems.
In addition to presenting a new time integration approach for

nonlinear elastodynamic systems, our work also expands current
knowledge of the applicability and computational advantages of
stiffly accurate exponential integrators. While theoretical under-
standing of the structure and efficiency of exponential integration
grew over the past decade, questions of their practical use and per-
formance remain to be addressed. This is particularly true with
respect to exponential integrators for general large scale nonlinear
systems. Applications of the exponential methods to complex real-
world problems are just beginning to appear [Einkemmer et al. 2017]
and more research is needed to identify areas where exponential
methods bring significant computational savings and to quantify
these advantages. Unresolved issues also remain regarding the use
of stiffly accurate exponential methods. While theoretically methods
satisfying stiff order conditions are expected to mitigate computa-
tional challenges associated with stiffness, demonstration of these
advantages has been limited to numerical test problems. Our work
shows that stiff accuracy and exponential integration enable signifi-
cant computational savings for modeling elastodynamic systems of
size and complexity relevant for practical applications.
Below, we detail the structure of the new time integration algo-

rithm and explain why this approach is computationally advanta-
geous.

3.1 Reformulating Elastodynamic Systems
We consider elastodynamic problems relevant to visual comput-
ing such as the simulation of systems of N /3 coupled oscillators
with N degrees of freedom. Each oscillator is represented by its
position vector xi (t ) ∈ R3 (i = 1, . . . ,N /3) at time t , with its
velocity computed as x′i (t ). Denoting the vector of positions by
x(t ) = (x1 (t ), x2 (t ), . . . , xN /3 (t )) ∈ R

N we can write the final form
of the model equations that describe a system of coupled oscillators
as

Mx′′(t ) + Dx′(t ) + Kx(t ) = f (x(t )). (1)
Note that no changes are needed to our time integration approach
based on whether coupled oscillators or finite elements are used to
model the system as long as the structure of the formulation can
be described by Eq. (1). Here, M,D,K ∈ RN×N are respectively the
symmetric mass matrix, the damping matrix, and the symmetric
stiffness matrix, and f (x) ∈ RN represents the total external forces
on the system. We ignore damping here for brevity and set D = 0
in the following derivations. Since the mass matrix M is always
nonsingular (and often even diagonal), Eq. (1) can be re-written in
the simpler form

x′′(t ) + Lx(t ) = g(x(t )), (2)

where we set L = M−1K ∈ RN×N and g(x(t )) = M−1f (x(t )), and
provide initial conditions x(t0) = x0 and x′(t0) = v0. In this work
we assume that the matrix L is symmetric positive-definite. This is
certainly the case when M is a diagonal matrix and K is symmetric
positive definite as a consequence of the Maxwell-Betti reciprocal
work theorem.We are interested in stiff systems where the solutions
of Eq. (2) possess a wide range of frequencies including very fast

modes that significantly outpace the time scale of the dynamics we
want to simulate, e.g. fast appearance of small, imperceptible to the
eye, wrinkles in a simulated cloth versus the overall folding of the
garment. Our aim is to develop a time integrator which is able to
efficiently evolve the system on the slower time scale of interest,
e.g. that of the overall movement of the garment, while preserving
a sufficient amount of accuracy, e.g. resolving enough wrinkles so
that the process of folding looks realistic.

A standard approach to solving Eq. (2) numerically is to write it as
a first order system of ordinary differential equations by changing
the vector of unknowns to include both positions and velocities of
the oscillators

X(t ) = (x(t ), x′(t ))T ∈ R2N .

Eq. (2) can then be re-written as

X
′(t ) = AX(t ) + Γ(X(t )), X(t0) = X0 =

[
x0
v0

]
(3)

with

A =

[
0 I
−L 0

]
∈ R2N×2N , Γ(X) =

[
0

g(x)

]
∈ R2N .

It is typically assumed that the source of stiffness in the model
are the linear spring forces Kx(t ) in Eq. (1) which corresponds
to the term AX(t ) in Eq. (3). Using explicit time integrators for a
severely stiff problem Eq. (3) is impractical due to restrictive stability
constraints on the size of a time step for such schemes. A common
way to address this computational challenge in visual computing
and other fields is to use a semi-implicit time discretization which
handles AX(t ) implicitly. The implicit treatment of the linear term
AX(t ) allows for the integration with a considerably larger time step
compared to explicit methods but this approach has two important
limitations.

The first issue stems from the fact that matrix A is generally non-
symmetric. Using an implicit integrator to solve Eq. (3) implies that
at each time step during the integration a product of an inverse of a
matrix (I − chA)−1 (c is a constant and h is the time step size) with
some vector v has to be calculated. Note that (I−chA)−1 is a rational
function of a matrix A. Since A is a non-symmetric stiff matrix and
generally not much is known about its spectrum of eigenvalues, the
computation of (I − chA)−1v is a computationally expensive task.
In particular, if an iterative method is used to compute this product,
it will likely require the construction of an effective preconditioner
to achieve reasonable efficiency.
The second limitation to the common semi-implicit approach is

that the forcing term f (x(t )) in Eq. (1), or Γ(X(t )) in Eq. (3), can
also be a source of stiffness. This can occur, for instance, when
external forces applied to the system are comprised of spatially
and temporally non-uniform time scales, e.g. fabric of a garment
can be simultaneously responding to overall motion of a body as
well as shaking of a flabby body part. Moreover, f (x(t )) is usually
a source of stiffness when strong impact forces are applied, since
these usually unpredictable forces are often notoriously stiff. Since
it is difficult, or perhaps even impossible, to partition the external
force operator f (x(t )) into a non-stiff and a stiff part, or extract
information about a spectrum of its Jacobian f ′(x(t )), it is also
difficult to treat it implicitly.
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Exponential integrators emerged as an alternative to explicit and
implicit techniques in numerical time integration. Unlike implicit
methods which require the approximation of a rational function of a
stiff matrix (e.g. matrix (I−chA)−1 as explained above), exponential
methods involve the computation of an exponential or exponential-
like function of this matrix (e.g. matrix exp(hA) as explained in the
next section). These integrators possess stability properties similar
to implicit schemes and allow for an integration with time steps
far exceeding those required for explicit methods. At the same time
exponential integrators can offer significant computational savings
in per-time step computational complexity compared to implicit
methods. This is particularly true for stiff problems, for which the
construction of an efficient preconditioner is difficult or impossible.
However, just like explicit and implicit schemes, exponential meth-
ods are not immune to the effects of increased stiffness. While using
an iterative method to evaluate a product exp(hA)v can be more
efficient than computing a similar product that involves a rational
function (I − chA)−1v, the number of required iterations will still
increase for both the exponential and the rational functions as the
stiffness of the matrix A is increased.
Given these considerations we reformulate the problem to im-

prove the numerical properties of the stiff matrix used as an argu-
ment for the exponential and exponential-like functions as follows.
As in Gautschi-type integrators [Michels et al. 2014] we define the
matrix Ω =

√
L. Please note, that for the uniqueness of its square

root, the structure of L = M−1K has to meet certain criteria, in
particular symmetry and positive definiteness, which are in general
not fulfilled in cases of an inhomogeneous mass distribution or for
a non-diagonally lumped mass matrix M. The appropriate handling
of these cases is described in App. A.

We now use the change of variableX(t ) = (Ωx(t), x′(t))T, so that
Eq. (2) can be reformulated as

X′(t ) = F(X(t )) =AX(t ) + G(X(t )) (4)

with X(t0) = X0, whereA = adiag(Ω,−Ω) and G(X) = (0, g(x))T.
As noted above, a similar change of variables was used in prior
publications [Buchholz et al. 2017; Chen and Russell 1982; Göckler
and Grimm 2013] for different purposes. For example, in Göckler
and Grimm [2013] this variable change is used to integrate a linear
Schrödinger equation using extended Krylov subspaces. Note that in
contrast to a generally nonsymmetric matrix A, matrixA is skew-
symmetric and consequently its spectrum is comprised of purely
imaginary pairs of eigenvalues ±λk i . In addition, A is also an
infinitesimal symplectic (or Hamiltonian) matrix since given J =

adiag(I,−I), we obtain JA = diag(−Ω,−Ω) = (JA )T. Clearly,
sinceA is infinitesimal symplectic then exp(tA ) is a symplectic
matrix, i.e. exp(tA )TJ exp(tA ) =J for all t .

Whether the complete Jacobian of Eq. (4), F′(X ) =A +G′(X), is
infinitesimal symplectic, and consequently the matrix exp(tF′(X))
is symplectic and the system described by Eq. (4) is Hamiltonian,
depends on the matrices g′(x) and Ω since J F′(X) = diag(−Ω +
g′(x)Ω−1,−Ω). Clearly, J F′(X) is symmetric if g′(x )Ω−1 is sym-
metric which will result in F′(X) being an infinitesimal symplectic
matrix. Symplecticity of the system described by Eq. (4) would, of
course, guarantee that propagating the solution with the operator

exp(tF′(X)) would exactly preserve the Hamiltonian which corre-
sponds to the total energy of the solution. While symplecticity of
F′(X) is not guaranteed, as the numerical experiments presented in
Sec. 4.1 demonstrate, our approach of using exponential integration
to propagate the solution with a direct high-order of accuracy ap-
proximation to exp(tF′(X)) results in the energy being preserved
within the required tolerance for the time intervals of interest in
our applications.

3.2 Exponential Integration
We now describe how an exponential integrator is constructed to
integrate the reformulated problem described by Eq. (4). We start
with discretizing the time variable tn = tn−1 + hn (n = 1, . . . ,T )
over the interval t ∈ [t0, tfinal] and writing Eq. (4) in the form

X′(t ) = F(X(tn )) + F′(X(tn )) (X(t ) − X(tn )) + Rn (X(t )), (5)

where

Rn (X(t )) = F(X(t )) − F(X(tn )) − F′(X(tn )) (X(t ) − X(tn )) (6)

is the nonlinear remainder function of the first-order Taylor ex-
pansion of F(X(t )) around X(tn ) and J(X(t )) = F′((X(t )) = A +
G′(X(t )) is the Jacobian matrix. By integrating Eq. (5) from tn to
tn+1 using an integration factor exp(−J(X(tn ))t ), we can write the
solution of Eq. (5) at tn+1 in an integral form

X(tn+1) = X(tn ) + hnφ1 (hnJ(X(tn )))F(X(tn ))

+

∫ tn+1

tn
exp((tn+1 − t )J(X(tn )))Rn (X(t )) dt , (7)

where φ1 (z) is an exponential-like analytic function defined as
φ1 (z) = z−1 (exp(z) − 1). Making a change of variable in the in-
tegral in Eq. (7) to θ with t = tn +θhn we obtain a slightly simplified
integral form

X(tn+1) = X(tn ) + hnφ1 (hnJ(X(tn )))F(X(tn ))

+hn

∫ 1

0
exp((1 − θ )hnJ(X(tn )))Rn (X(tn + θhn )) dθ . (8)

Exponential integrators are then constructed by developing a
quadrature for the nonlinear integral in Eq. (8). To simplify the
notation let us now define the approximate solution computed by
an integrator as Xn ≈ X(tn ) and respectively Fn = F(Xn ) and
Jn = F′(Xn ). If some polynomial approximation is chosen for

Rn (X(tn + θhn )) ≈ v̄1 + θhn v̄2 + θ
2h2

n v̄3 + · · · + θ
p−1h

p−1
n v̄p

(v̄i are vectors in R2N ), any resulting quadrature rule will involve
linear combinations of terms of the form(

hn

∫ 1

0
exp((1 − θ )hnJn )θk−1dθ

)
v̄k .

Introducing a rescaling factor v̄k = vk/(k − 1)! we can write these
terms as

hnφk (hnJn )vk ,

where φk (z) are exponential-like analytic functions defined by

φk (z) =

∫ 1

0
exp((1 − θ )z)

θk−1

(k − 1)!
dθ , k ∈ N∗. (9)
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3.3 EPIRK Methods
In this paper we make use of EPIRK methods which, in our nu-
merical experiments, allowed for most efficiency given the desired
accuracy in the simulations. These methods were originally pro-
posed by Tokman [2006] and then generalized, extended and tested
in subsequent publications [Loffeld and Tokman 2013; Rainwater
and Tokman 2016b; Tokman 2011]. The EPIRK framework allows for
a formulation of general classes of methods with flexible structure.
This flexibility is then used to construct specific schemes that are
particularly efficient for given classes of problems. Using the defini-
tions of Xn , Fn , Jn and Rn from the previous section we can write
the general s-stage EPIRK method for the problem X′(t ) = F(X(t ))
in the form

Xni = Xn + ai1ψi1 (дi1hnAi1)hnFn

+ hn

i−1∑
j=2

ai jψi j (дi jhnAi j )∆
(j−1)R(Xn ), i = 2, . . . , s,

Xn+1 = Xn + b1ψs+1,1 (дs+1,1hnAi1)hnFn

+ hn

s∑
j=2

bjψs+1, j (дs+1, jhnAi j )∆
(j−1)R(Xn ), (10)

where hn = tn+1 − tn is the time step, ai j , bi , дi j are constant
coefficients, ψi j are functions, Ai j are matrices and R(X) is a vec-
tor function. The k-th forward difference is denoted by ∆(k ) and
∆(k )R(Xn ) denotes the forward difference operator constructed us-
ing the stage vectors Xn ,Xn2, . . . ,Xns . The choices of matrices Ai j ,
and functionsψi j and R(X) are made depending on the structure of
the operator F(X(t )) in X′(t ) = F(X(t )) to derive different classes
of EPIRK methods [Tokman and Rainwater 2014]. Here we focus on
the class of general EPIRK methods which result from the following
choices:

Ai j = Jn = F′n (Xn )

are the Jacobian of the full nonlinear forcing operator F(X), R(X) =
Rn (X(t )) is the nonlinear remainder function from Eq. (6) and func-
tionsψi j (z) are chosen to be linear combinations of exponential-like
functions (9):

ψi j (z) =
K∑
k=1

pi jkφk (z), φk (z) =

∫ 1

0
ez (1−θ )

θk−1

(k − 1)!
dθ .

The general EPIRK methods are sometimes called “unpartitioned”
because the operator F is not partitioned into separate terms and
its full Jacobian is used in the integrator. Specific EPIRK schemes
can be constructed by determining constant coefficients ai j , bi , дi j
and pi jk given considerations of accuracy and efficiency. In Sec. 3.4
we describe how these coefficients can be derived using the con-
cept of stiff accuracy and the corresponding order conditions. Typi-
cally either classical or stiff order conditions are underdetermined
and additional constraints can be placed on the coefficients. These
constraints usually come from considerations of efficiency of the
method. For example, in Sec. 3.5 we discuss how minimizing coeffi-
cients дi j can result in significant computational savings if Krylov
projection-based algorithms are used to evaluate matrix function-
vector products φk (hnJn )vk in Eq. (10) [Loffeld and Tokman 2013;
Rainwater and Tokman 2014, 2016b].

For the elastodynamic problems considered here we found that
the best balance of accuracy versus efficiency is obtained using
fourth order three-stage EPIRK methods that can be written in a
general form as

Xn2 = Xn + a21ψ21
(
д21hnJn

)
hnFn , (11)

Xn3 = Xn + a31ψ31
(
д31hnJn

)
hnFn

+ a32ψ32
(
д32hnJn

)
hn∆Rn ,

Xn+1 = Xn + b1ψ41
(
д41hnJn

)
hnFn

+ b2ψ42
(
д42hnJn

)
hn∆Rn

+ b3ψ43
(
д43hnJn

)
hn∆

2Rn ,

whereψi j (z) =
∑Ki j
k=0 pi jkφk (z), and the forward differences ∆ and

∆2 are constructed on the nodes Xn1 = Xn , Xn2, Xn3 and defined
by (note Rn (Xn ) = 0)

∆Rn = Rn (Xn ) − Rn (Xn2) = −Rn (Xn2),

∆2Rn = −2Rn (Xn2) + Rn (Xn3).

To derive the three-stage EPIRK scheme of fourth order we need
to determine an expansion of the local error of the method over
one time step in terms of powers of hn . Different forms of such an
expansion lead to either classically or stiffly accurate methods. In ei-
ther case the order conditions are derived by setting the coefficients
of the powers of hn to zero and solving the resulting equations with
appropriate additional constraints for the constants ai j , bj , дi j , and
pi jk . For very stiff problems stiffly accurate schemes offer signifi-
cant computational savings compared to classical methods. In the
subsequent sections we describe the key idea behind stiff accuracy
and demonstrate the efficiency and accuracy of the stiffly accurate
exponential integrator.

3.4 Stiff Accuracy
A classical approach to deriving time integration schemes of a given
order starts with expanding both the exact solution of Eq. (4) and
the numerical solution defined by the numerical scheme (11) in a
Taylor series around X(tn ). The resulting Taylor expansions are
comprised of linear combinations of so-called elementary differ-
entials, i.e. products of F and its derivatives [Butcher 2008; Hairer
et al. 2004; Hairer and Wanner 2004]. The exact solution of Eq. (4)
expanded in a Taylor series can be written as

X(tn + hn ) = X(tn ) + hnX′(tn ) +
1
2!
h2
nX
′′(tn )

+
1
3!
h3
nX
′′′(tn ) + . . .

or using Eq. (4) itself and defining F̃n = F(X(tn )), J̃n = F̃′n as

X(tn + hn ) =X(tn ) + hn F̃n +
1
2!
h2
n F̃
′
n F̃n

+
1
3!
h3
n
[
F̃′′n (F̃n , F̃n ) + F̃

′
n F̃
′
n F̃n

]
+ . . . (12)

=X(tn ) + hn F̃n +
1
2!
h2
n J̃n F̃n

+
1
3!
h3
n
[
F̃′′n (F̃n , F̃n ) + J̃

2
n F̃n

]
+ . . . .

ACM Transactions on Graphics, Vol. 36, No. 4, Article 116. Publication date: July 2017.



116:6 • Michels, D.L. et al.

We now define X̂n+1 to be the numerical solution computed using
Eq. (11) with the approximation at the previous time step Xn re-
placed with an exact solution X̃n = X(tn ). The Taylor expansion of
X̂n+1 also involves powers of hn and the elementary differentials
of F, but has more complicated coefficients ci j that are functions of
constants ai j , bj , дi j , and pi jk :

X̂n+1 =X(tn ) + hnc11F̃n + h2
nc21F̃′n F̃n

+ h3
n
[
c31F̃′′n (F̃n , F̃n ) + c32F̃′n F̃

′
n F̃n

]
+ . . . . (13)

Note that in obtaining the expansion (13) functionsψi j (z) and conse-
quently functions φk (z) are also expanded in a Taylor series around
J̃n = F′(X(tn )). The local truncation error of a method is the differ-
ence between the Taylor expansions of the exact Eq. (12) and the
numerical Eq. (13) solutions:

en = X̂n+1 − X(tn + hn )

= hn (c11 − 1)F̃n + h2
n
(
c21 −

1
2!

)
F̃′n F̃n

+ h3
n
[(
c31 −

1
3!

)
F̃′′n (F̃n , F̃n ) +

(
c32 −

1
3!

)
F̃′n F̃
′
n F̃n

]
+ . . .

= hn (c11 − 1)F̃n + h2
n
(
c21 −

1
2!

)
J̃n F̃n

+ h3
n
[(
c31 −

1
3!

)
F̃′′n (F̃n , F̃n ) +

(
c32 −

1
3!

)
J̃2
n F̃n

]
+ . . . . (14)

The order conditions are then derived by setting coefficients of the
elementary differentials in Eq. (14) to zero up to the desired order
of accuracy, e.g. to get a method of order three from Eq. (14) we will
solve the order conditions

c11 = 1, c21 − 1/2! = 0, c3i − 1/3! = 0

for i = 1, 2. Since ci j are nonlinear algebraic functions in the
method’s coefficients ai j , bj , дi j , and pi jk , the values for these co-
efficients can be obtained by solving these order conditions. The
precise form of the functions ci j is complex and presenting them
here does not add to the conceptual understanding so we refer an
interested reader to Tokman [2011] for these formulas. The order
conditions are solved exactly, if possible, or approximately to a high
precision to obtain values for ai j , bj , дi j , and pi jk .

Since in this classical approach functionsψi j (z) and consequently
functions φk (z) are also expanded in a Taylor series, in a sense, the
resulting method is using a finite-order polynomial approximation
to these exponential-like functions. The convergence of the method
can be proved by showing that the method is stable. Convergence
is demonstrated by proving that the global error En is bounded as
| |En | | ≤ Chq , where C is independent of hn and h is the maximum
time step size h = max

n
{hn }.

While methods derived in this classical way will exhibit the the-
oretically expected order of accuracy for non-stiff problems, this
might not be the case for stiff systems. For stiff problems the Jacobian
matrix J̃n can have a very large norm, so the elementary differentials
such as, for example, J̃n F̃n or J̃2

n F̃n in Eq. (14) can potentially be
vectors with a very large norm as well. The finite precision nature
of practical computations implies that the actual values used for
coefficients ai j , bj , дi j , and pi jk will result in the order conditions
being satisfied at best up to the roundoff error but not exactly. Thus
the terms in the expansion of the local error (14) can actually be
large if the corresponding elementary differentials involving J̃n are

very large in the norm. Another way to see this effect is to realize
that the formula for coefficient C involved in the bound Chq of the
classical global error En , can depend on the stiff matrix J̃n .
For example, a second order method with c11 = 1 and c21 = 1/2

applied to a very stiff problem might not actually exhibit full second
order in practice because the large norm of J̃n will make the error
term

(c21 − 1/2)h2
n J̃n F̃n

in Eq. (14) large enough even if the value of c21 − 1/2 is close to a
roundoff error. Such an order reduction can result in a significant
loss of efficiency.
An approach to derive time integrators that help mitigate this

problem is to derive so-called stiff order conditions and to use them
to construct specific schemes. Stiff accuracy is the notion originally
developed for implicit methods [Hairer and Wanner 2004] and then
for exponential Runge-Kutta and exponential Rosenbrock methods
[Hochbruck and Ostermann 2005, 2006; Luan and Ostermann 2013,
2014a,b]. Recently, Rainwater and Tokman [2016b] expanded the
stiff order theory for exponential Rosenbrock methods to the EPIRK
framework and constructed stiffly accurate EPIRK schemes, which
we employ in this work.

To understand the notion of stiff accuracy it is important to recall
that if the spectrum of a matrix A lies in the left half of the complex
plane or on the imaginary axis (which is the case for stable dynamical
systems), then even if A has a large norm, the norm of matrix
exp(A) is bounded by 1. Similarly bounded will be the norms of
matrices involving exponential-like functions φk (A). In addition, it
is reasonable to assume that the solution of Eq. (4) and its derivatives
are bounded. To derive stiffly accurate methods the local error en
is expressed in terms of these bounded quantities rather than all
of the elementary differentials. Using stiff order conditions derived
from these expressions, it is then possible to show that the resulting
global error En is bounded by | |En | | ≤ Chq where the constant C
is independent of ∥J̃n ∥ and thus the resulting method is much less
sensitive to the stiffness of the problem.
For problem types described by Eq. (4) it has been shown for

exponential Rosenbrock schemes [Luan and Ostermann 2014b] and
for EPIRK integrators [Rainwater and Tokman 2016b] that the local
error can be expressed as

en = C1
(
hn J̃n

)
hn F̃n +C3

(
hn J̃n

)
h3
n F̃
′′
n (F̃n , F̃n ) + . . . . (15)

While coefficients Ci (hn J̃n ) still depend on ai j , bi j , дi j , and pi jk ,
unlike classical coefficients ci j these are now bounded functions
of hn J̃n . This new form of the local error (15) no longer involves
explicit powers of J̃n and expresses en in terms of quantities that
are assumed bounded such as F̃n and F̃′′n . For the sake of simplicity
we omit the higher order terms here but note that their formulas
have the same properties and express the error in terms of matrix
functionsφk (hn J̃n ) alongwith bounded derivatives of F andX. Once
again, the expressions of the stiff order conditions are quite complex.
For example, to satisfyC3 (hn J̃n ) = 0 coefficients of an s-stage stiffly
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accurate EPIRK method Eq. (10) must satisfy the conditions

C3
(
Z
)
=

s∑
i=2

Bi (Z )a
2
i1P

2
i1 − 2φ3 (Z ) = 0,

Pi1 =
s∑

k=1

pi1k
k!
,

Bi (Z ) =
s∑

k=i

(
k − 1
s

)
(−1)k−s−3bkψs+1,k (дs+1,kZ )

for any square matrix Z . For exact formulas of the stiff order condi-
tions we refer the reader to Rainwater and Tokman [2016b] and note
that stability and convergence of such schemes was proved [Luan
and Ostermann 2014b; Rainwater and Tokman 2016b]. In addition,
in App. B we offer a compact proof of the stability of the method.
The stiff order conditions are not uniquely solvable and many

stiffly accurate EPIRK schemes can be constructed. Thus additional
constraints can be imposed on the order conditions. To further
improve the efficiency of themethodwe choose to enforce additional
constraints based on the approximation of the matrix function-
vector products φk (дhnJn )v as explained in the next section.

3.5 Adaptive Krylov Evaluations
The main computational cost of an exponential method lies in the
evaluations of matrix functions φk (A)v (A is a matrix and v is a
vector). A number of algorithms have been proposed in the literature
[Al-Mohy and Higham 2011; Bergamaschi et al. 2004; Caliari et al.
2016; Kassam and Trefethen 2005; Moler and Loan 2003; Niesen and
Wright 2012]. Many of these methods, however, either assume that
the matrix A is small or require additional information about the
spectral radius or structure of the matrix. The most general and
efficient method applicable to general large matrices is the adaptive
Krylov algorithm developed by Niesen and Wright [2012]. Since
the detailed description of the algorithm is complex and is available
along with the pseudocode in their original paper [2012], here we
focus on themain idea of the algorithm, particularly highlighting the
properties of the method that allow imposing additional constraints
on the order conditions and constructing efficient EPIRK schemes.
At the core of the adaptive Krylov algorithm is the Krylov sub-

space projectionmethod originally proposed by Van der Vorst [1987]
for the evaluation of products f (A)v of arbitrary matrix functions
and vectors. The standard Krylov algorithm uses a projection of A
and v onto a Krylov subspace

Sm = span{v,Av,A2v, . . . ,Am−1v} = span{v1, v2, . . . , vm }.

An orthonormal basis {vi }mi=1 of Sm is obtained by using the Arnoldi
iteration [Arnoldi 1951], which is based on a Gram-Schmidt orthog-
onalization procedure. The Arnoldi iteration provides the matrix
Vm which has vectors vi as its columns and the (m ×m)-matrix
Hm = VH

mAVm , where VH
m is a conjugate transpose of Vm . The

product f (A)v is then approximated as f (A)v ≈ ||v| |2Vm f (Hm )e1
with e1 = (1, 0, . . . , 0)T. Ifm is small, the evaluation of f (Hm ) is
inexpensive and can be done by a number of methods including
Taylor expansion, Padé approximation or other algorithms as de-
scribed for instance by Moler and Loan [2003]. The value ofm that

ensures the desired accuracy of the approximation, is determined
dynamically using residual estimates.

The overall cost of a Krylov subspace projection method is dom-
inated by the Arnoldi iteration to construct Vm and the number
of flops scales as O (m2). Clearly the number of the Krylov vectors
m depends on the spectrum of A and the magnitude of v. A stiffer
matrix with a larger spectral radius will require a larger number of
Krylov vectorsm. It is well-known that a more clustered spectrum
results in a faster convergence of the Krylov projection algorithm
and therefore a smallerm. Note that if instead of f (A)v we need
to approximate f (τA)v with a small coefficient τ ∈ (0, 1), the spec-
trum of the matrix τA will be more clustered compared to A. Thus
we can expect the number of Krylov vectors to approximate f (τA)v
to be smaller.

The adaptive Krylov algorithm is designed to compute the linear
combination

φ0 (A)w0 + φ1 (A)w1 + φ2 (A)w2 + · · · + φM (A)wM (16)

for some vectorswi , i = 0, . . . ,M . This is accomplished by using an
auxiliary function

U(ρ) = φ0 (ρA)w0 + ρφ1 (ρA)w1

+ ρ2φ2 (ρA)w2 + · · · + ρ
MφM (ρA)wM

and realizing that U(ρ) is the solution of the initial-value problem

U′(ρ) = AU(ρ) +w1 + ρw2 + · · · +
ρM−1

(M − 1)!
wM , U(0) = w0.

EvaluatingU(ρ) over the interval ρ ∈ [0, 1], i.e. computingU(ρ = 1),
provides the desired value for (16). If the interval [0, 1] is split into
subintervals 0 = ρ0 < ρ1 < · · · < ρk < ρk+1 = ρk + τk < · · · <
ρK = 1, the solution U(ρk+1) given a known value of U(ρk ) can be
calculated from

U(ρk+1) = φ0 (τkA)U(ρk ) +
M∑
i=1

τ ikφi (τkA)
M−i∑
j=0

ρ
j
k
j!
wi+j . (17)

The functions φk are connected via a recurrence relation φq (A) =
φq+1 (A)A + I/q!, or more generally via

φq (A) = φM (A)AM−q +

M−q−1∑
j=0

1
(q + j )!

Aj , q = 0, 1, . . . ,M − 1.

(18)
Using Eq. (18) in Eq. (17) we can rewrite the explicit expression for
U(ρk+1) as

U(ρk+1) = τ
M
k φM (τkA)uM +

M−1∑
j=0

τ
j
k
j!
uj , (19)

where the vectors uj are given by

uj = AjU(ρk ) +
j∑

i=1
Aj−i

j−i∑
l=0

ρlk
l !

wi+l , j = 0, 1, . . . ,M .

Note that the computation of U(ρk+1) using Eq. (19) requires only
one evaluation of a matrix function-vector product φM (τkA)wM
and this evaluation involves a scaled matrix τkA with τk < 1. The
adaptive Krylov algorithm uses estimators of the computational
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cost and error to chose the substep sizes τk adaptively as described
by Niesen and Wright [2012].

In short, the adaptive Krylov algorithm replaces one Krylov pro-
jection to evaluate φ j (A)wj which requiresm iterations, with sev-
eral Krylov projections to compute φ j (τkA)wj each requiringmk
Krylov iterations. Practice shows that for most applications the total
cost of the adaptive Krylov step O (m2

1) + · · · + O (m
2
K ) is, in fact,

significantly smaller than the cost of one regular Krylov projection
O (m2) sincemk ≪m, k = 1, . . . ,K .
The adaptive Krylov-friendly EPIRK methods are optimized to

take advantage of the properties of the adaptive Krylov algorithm.
Such EPIRK schemes are constructed in a way to reduce the total
number of Krylov projections executed by the algorithm as well as to
choose projections that require fewer Krylov vectors. We illustrate
this point by using the following three-stage stiffly accurate fourth-
order EPIRK4s3 method [Rainwater and Tokman 2016a] employed
in our numerical examples:

Xn2 = Xn +
1
8
φ1

( 1
8
hnJn

)
hnFn ,

Xn3 = Xn +
1
9
φ1

( 1
9
hnJn

)
hnFn ,

Xn+1 = Xn + φ1 (hnJn ) hnFn

+
(
1892φ3

(
hnJn

)
− 42336φ4

(
hnJn

))
hnRn (Xn2)

+
(
1458φ3

(
hnJn

)
− 34992φ4

(
hnJn

))
· hn (Rn (Xn3) − 2Rn (Xn2)) . (20)

We use the constant time step version of this scheme, i.e. hn = h.
We tested several exponential methods and determined that the
scheme (20) provided the most efficient way to obtain a numerical
solution of our elastodynamic models to the desired accuracy. The
coefficients of scheme (20) are derived using stiff order conditions
and an additional requirement to reduce the coefficients дi j . As
we discussed earlier smaller coefficients дi j translate into a more
clustered spectrum of the matrix дi j Jn compared to Jn . Such a clus-
tering allows for a significant reduction of the required number of
Krylov iterations to approximate the products of matrix functions
and vectors.
While at first glance the scheme (20) appears to require calcula-

tion of five products of type φk (A)v for each time step, employing
adaptive Krylov to obtain these approximations reduces the number
of Krylov projections needed to only two. The first projection is
needed to evaluate these products in the first and second stages,
i.e. to compute both terms φ1 (hn/8 Jn )hnFn and φ1 (hn/9 Jn )hnFn .
Note that the optimization of the д21 = 1/8 and д31 = 1/9 coeffi-
cients implies that A = hn/8 Jn which makes the spectrum of A
more clustered compared to the spectrum of hnJn . The adaptive
Krylov substepping procedure has to be modified slightly to en-
sure that one of the substepping stops is ρk = 1/9 where the term
φ1 (hn/9 Jn )hnFn is computed and stored.

The second adaptive Krylov projection is used to compute the
linear combination of all products of type φk (A)v in the last stage
of the method. It was shown [Rainwater and Tokman 2016b] that
a necessary condition for the stiff order conditions to hold is that
all д-coefficients in the last stage of a method must be equal to 1.

Thus it is not possible to derive a stiffly accurate three-stage EPIRK
method with д4i < 1.

3.6 Final Algorithm
Summarizing the ideas presented in the previous sections we now
provide the outline of the overall stiffly accurate integration method
in Alg. 1 for the initial value problem

x′′(t ) + D̄x′(t ) + Lx(t ) = g(x(t )) (21)

with x(t0) = x0, x′(t0) = v0, and quantities L and g as specified in
Eq. (2).

ALGORITHM 1: Stiffly accurate integration algorithm for the Cauchy
problem x′′(t ) + D̄x′(t ) + Lx(t ) = g(x(t )), x(t0) = x0, x′(t0) = v0.

• Input:
◦ L ∈ RN×N ; g(x), x0, v0 ∈ R

N ;
◦ time interval [t0, tfinal] and step size h.

• Initialization:
1. Compute Ω =

√
L according to Sec. 3.6.1.

2. Set X0 =

[
Ωx0
v0

]
.

3. Compute F0 = F(X0) =AX0 + G(X0) as in Eq. (4) where
A and G(X) are given by

A =
[

0 Ω
−Ω 0

]
, G(X) =

[
0

g(x) − D̄v

]
.

4. Set nts = round((tfinal − t0)/h).
5. n = 0.

• Time stepping procedure:
(1) For n = 0 to (nts − 1) do
(2) Compute Fn = F(Xn ) =AXn + G(Xn ).
(3) Use the adaptive Krylov algorithm to compute

simultaneously terms
W1 = φ1

(
1
8hJn

)
hFn and W2 = φ1

(
1
9hJn

)
hFn .

(4) Compute Xn2 = Xn + 1
8W1 and Xn3 = Xn + 1

9W2 as in
Eq. (20).

(5) Compute
Rn2 = Rn (Xn2) and Rn3 = Rn (Xn3) using
Rn (X) = F(X) − F(Xn ) − F′(Xn ) (X − Xn ) .

(6) Use a single call to the adaptive Krylov algorithm to
compute the linear combination W of terms φk (A)vk in the
definition of Xn+1 as given by Eq. (20).

(7) Update the solution at the next time step
Xn+1 = Xn +W.

(8) Update Xn := Xn+1.
tn := tn + h.
n := n + 1.

(9) End for
• Output

(1) Compute positions xnts by solving the linear system of
equations Ωxnts = Xnts (1 : N).

(2) Set velocities to x′nts = Xn+1 (N + 1 : 2N ).

3.6.1 Matrix Square Root Computation. The choice of themethod
for computing a matrix square root Ω =

√
L in Alg. 1 depends on the

size of L and its properties. For example, when dealing with small
or moderate systems we can use the Schur decomposition. The cost
of this method for a symmetric matrix L ∈ RN×N is 10N 3 flops
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[Higham 2008]. Therefore, the Schur method is not feasible if the
system is large. In this case, to avoid the explicit precomputation of
Ω, we suggest using iterative methods such as Newton square root
iteration or its variants. The idea is to approximate the solution of
the equation Ω2 = L by iteration as follows. First, suppose that Ωk
is an approximation to Ω with small error Ek = Ω − Ωk. We then
obtain Ω = Ωk + Ek and thus (Ωk + Ek)

2 = L, which is equivalent
to Ω2

k + ΩkEk + EkΩk + E
2
k = L. Since Ek is small, one can neglect

E2
k and obtain the following iterative method:

1. given Ω0 (k = 0),
2. solve ΩkEk + EkΩk = L − Ω2

k for Ek (k = 1, 2, . . . ),
3. update Ωk+1 = Ωk + Ek.

A well known result [Higham 2008] shows that if Ω0 is chosen to
commute with L then all the Ωk and Ek commute with L as well,
which allows to reduce the cost significantly and to simplify the
iteration scheme. In particular, the use of the common choice Ω0 = L
results in the simplified iteration scheme

1. choose Ω0 = L (k = 0),
2. update Ωk+1 =

1
2 (Ωk + Ω−1k L),

which offers unconditional quadratic convergence with cost 8/3N 3

flops. Since Ω is symmetric and positive definite, its inversion can
be done efficiently using a Cholesky decomposition Ω = STS with
an upper triangular matrix S with real and positive diagonal entries.
The inverse matrix is then given by Ω = S−1S−T.

3.6.2 Damping. Since damping is of importance for several sce-
narios in visual computing, Alg. 1 already contains the necessary
terms in order to handle damping caused by a term D̄ = M−1D
(with mass- and damping matricesM and D as specified in Eq. (1))
numerically.

3.6.3 Nonlinear Elasticity. For phenomena like nonlinear elas-
ticity described by a varying matrix L(x(t ), t ), Eq. (21) can be trans-
formed into

x′′(t ) + D̄x′(t ) + L(x0, t0) x(t ) = g̃(x(t )),

where g̃(x(t )) = g(x(t )) + (L(x0, t0) − L(x(t ), t )) x(t ). That way,
g̃ does not only contain the contact forces, but rather the whole
nonlinear part of the elastic forces. A major advantage of Alg. 1 is
the exponential handling of the nonlinearity, so that stability is also
ensured in such nonlinear cases.

3.6.4 Stiff Accuracy. To illustrate the importance of the stiff
accuracy of our method we compare the stiffly accurate method
EPIRK4s3 (20) with theGautschi-type exponential integrator [Michels
et al. 2014] and a classically fourth-order accurate two-stage expo-
nential Rosenbrock method [Luan 2017]. The results are discussed
in Sec. 4.1, in particular a precision diagram is shown in Fig. 3(a). It
can clearly be observed that the stiffly accurate method is much less
sensitive to increased stiffness of the problem and provides superior
efficiency compared to other methods.

4 NUMERICAL SIMULATIONS
In this section, we present several numerical examples to study the
behavior of our new stiffly accurate integrator described in Alg. 1.
Our method is evaluated against a classical and a state-of-the-art

# Model N Duration SAI (h) EI (h) NR (h)

0a Bunny (κ0) 24K 3min 126 s (57.1ms) 523 s (17.2ms) 1 h (3.9ms)
0b Bunny (κ1) 24K 3min 127 s (56.6ms) 728 s (12.3ms) 1.5 h (2.6ms)
0c Bunny (κ2) 24K 3min 127 s (56.7ms) 946 s (9.5ms) 2.3 h (1.7ms)
1a Bunny (κ3) 3K 3min 8 s (72.9ms) 56 s (40.5ms) 7min (6.2ms)
1b Bunny (κ3) 12K 3min 58 s (69.1ms) 269 s (33.4ms) 43min (5.5ms)
1c Bunny (κ3) 24K 3min 127 s (56.6ms) 861 s (10.4ms) 2 h (2.1ms)
2 Flag 10.5K 6 s 1 s (0.2 s) 8 s (37.5ms) 72 s (6.6ms)
3a Eiffel Tower (k1) 15K 12 s 3 s (0.1 s) 26 s (23.0ms) 5min (3.2ms)
3b Eiffel Tower (k2) 15K 12 s 3 s (0.1 s) 33 s (18.1ms) 7min (2.2ms)
4 Head Shake 6.48M 4 s 54min (49.3ms) 31 h (1.7ms) 80 h (13.1ms)
5 Tooth Brushing 90K 3min 16min (7.5ms) 6 h (0.4ms) 18 h (0.22ms)
6 Bacteria 360 2 s < 1 s (0.1 s) 4 s (25.4ms) 23 s (6.95ms)

Table 1. The table provides an overview of the test cases used throughout
this section. The number of degrees of freedom (N ), the duration of the
scene, and respective computation times for simulating the scene using the
stiffly accurate integrator (SAI), the Gautschi-type exponential integrator
(EI), and the Newton-Raphson procedure (NR) are shown. All measurements
are for “equal quality” and a maximally tolerated error of 10% is enforced
to ensure similar visual impressions. The time step values (h) are stated in
brackets behind the computation times.

Fig. 2. Visualization of the simulation of two flags waving in the wind
computed with the classical Newton-Raphson procedure (left) and the
stiffly accurate integrator (right). While the flag on the left suffers from an
uncontrollable artificial numerical dissipation, the flag on the right shows a
plausible dynamical behavior.

method for stiff systems in visual computing , in particular against
a backward Euler scheme computed with the Newton-Raphson pro-
cedure and the Gautschi-type exponential integrator described by
Michels et al. [2014]. In order to improve the convergence of the clas-
sical Newton-Raphson procedure, we employ a line search scheme
and additionally apply diagonal Hessian correction in case of in-
definite matrices as described by Nocedal and Wright [2006]. The
standard Krylov method described in Sec. 3.5 is used to evaluate the
matrix functions required by the Gautschi-type exponential integra-
tor. A tabular summary of the test cases that are used throughout
this section and the computation times can be found in Tab. 1. All
simulation times are measured on a desktop computer with an In-
tel(R) Xeon CPU clocked at 3.5GHz and 64 GB DDR-RAM.

4.1 Deformable Objects
As canonical examples, we set up undamped scenes of wobbling bun-
nies, which are composed of tetrahedra, in particular each bunny
of 8 000 particles corresponding to N = 24 000 degrees of free-
dom. The original geometry of the bunnies is taken from Stanford’s
scanning repository [2013], further processed, and its volume is
tetrahedrized using the Delaunay-based tetrahedral mesh generator
developed by Si [2015]. The underlying equations of motion are
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Fig. 3. (a) Precision diagram (left) for illustrating the relative L2-error in the position and velocity space for the Gautschi-type exponential integrator
(continuous curves), the exponential Rosenbrock integrator (dashed curves), and the stiffly accurate integrator (dotted curves). This is shown for different
stiffnesses κ0 (blue), κ1 (green), and κ2 (red). Please note, that it is hard to distinguish between the dotted curves since they almost overlap. (b) Energy
diagram (middle) showing the temporal evolution of the discrete energy measured during the simulation of the wobbling bunnies with different stiffness
ratios κ0 (blue), κ1 (green), and κ2 (red) using the stiffly accurate integrator. (c) Runtime diagram (right) showing the dependence of the computation time on
the number of degrees of freedom (N ) for the simulation with the stiffly accurate integrator. Structural spring stiffnesses of ks = 102 and diagonal spring
stiffnesses of kd = 1011 are used leading to a stiffness ratio of κ3 = 109.

derived from a classical system of coupled oscillators. The struc-
tural springs correspond to the edges of the tetrahedra. In order
to prevent a volumetric collapse of the tetrahedra, strong diago-
nal springs connecting the vertices with the center points of the
opposed triangles are added. The bunnies are exposed to an exter-
nal force field pointing downwards in the vertical direction. We
always set the stiffness constants of the structural springs equal to
ks = 102, whereas the stiffness constants of the diagonal springs
kd ∈ {108, 1010, 1012} are varied throughout our experiments lead-
ing to different stiffness ratios κ := kd/ks, in particular to κ0 = 106,
κ1 = 108, and κ2 = 1010. The results of our experiments are shown
in Fig. 3. In particular, the precision diagram Fig. 3(a) shows the
performance of our stiffly accurate integrator compared to the clas-
sically accurate two stage exponential Rosenbrock integrator [Luan
2017] and the Gautschi-type exponential integrator [Michels et al.
2014] for the simulation of wobbling bunnies over 3min. Whereas
the performance of the classical exponential Rosenbrock and the
Gautschi-type integrator strongly decreases when the stiffness is
increased, our stiffly accurate integrator is almost immune and does
not show a significant decrease of its performance. This leads to
dramatic speedups, especially when it comes to large stiffnesses as
summarized in Tab. 1(0a-0c), which shows the computation times
for the simulation of wobbling bunnies with different stiffnesses
and a maximally tolerated relative L2-error of 10% in the position
and velocity space (although chosen arbitrarily ensuring a sufficient
degree of visual accuracy) compared to a ground truth determined
using the classical Runge-Kutta method (RK4) with sufficiently tiny
time step sizesh = 10−10 s. When it comes to high stiffness values, in
particular κ = 1010 here, our stiffly accurate integrator significantly
speeds up the simulation of the wobbling bunny by a factor of over
seven compared to the Gautschi-type exponential integrator, and
by a factor of around 65 compared to the classical Newton-Raphson
procedure.

We observe that the tips of the bunnies’ ears return to their initial
position periodically during the simulation which can be considered
as an indicator for energy conservation. To confirm this assump-
tion, the temporal evolutions of the total energies of the systems

are measured and plotted in Fig. 3(b) for different stiffnesses. It can
be observed that the discrete energy is oscillating around the real
energy without increasing oscillations over time showing long-term
stability of the stiffly accurate integrator. Moreover, the oscilla-
tions are not significantly increasing when the stiffness is increased,
which demonstrates that the stiffly accurate integrator handles the
numerical stiffness in a sophisticated way while preserving energy.

Finally, we carry out the simulation with different resolutions of
the bunny geometry. The runtime is measured and illustrated in
Fig. 3(c) for the stiffly accurate integrator. Moreover, correspond-
ing runtimes for the Gautschi-type exponential integrator and the
Newton-Raphson procedure can be found in Tab. 1(1a-1c). For our
stiffly accurate integrator, we observe an almost linear trend.

4.2 Nonlinear Textiles
At least since the early work of Terzopoulos and Fleischer [1987],
the simulation of cloth and textiles is within the scope of visual
computing. Textiles can be modeled using a flat system of coupled
oscillators connected with structural, diagonal (shear), and bending
springs. The highly nonlinear load-deflection behavior of textiles
could be better approximated using cubic springs instead of lin-
ear ones. According to that, we set up simulations of flags waving
in the wind each composed of 50 × 70 particles (corresponding to
N = 10 500 degrees of freedom) connected with cubic springs. The
structural spring stiffnesses are set up to ks = 104, the diagonal
spring stiffnesses to kd = 103, and the bending spring stiffnesses
to kd = 102. According to the ground truth computed using the
classical Runge-Kutta method (RK4) with sufficiently tiny time step
sizes h = 10−10 s, the total area of the textile (i.e. the sum of the
areas of the triangles describing the flag’s surface) is not varying
by more than 2.5%. Tab. 1(2) shows the computation times for the
simulations with a maximally tolerated error which ensures that
the change of the area of the textile is below a 3%(≈ 2.5%) thresh-
old. While the flag simulated with the stiffly accurate integrator
shows a realistic dynamical behavior, the flag simulated with the
Newton-Raphson procedure suffers from an uncontrollable artifi-
cial numerical dissipation, see Fig. 2. The stiffly accurate integrator
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achieves a clearly better result while speeding up the simulation
by a factor of eight compared to the Gautschi-type exponential in-
tegrator and by a factor of 72 compared to the Newton-Raphson
procedure.

4.3 Co-rotational Deformations
The co-rotational formulation for finite elements was originally in-
troduced byWempner [1969]: geometrically nonlinear deformations
of a continuum are decomposed into rigid rotations and contribu-
tions due to pure strain. The strain fraction typically remains small
so that it can be treated by means of a linearized form of Green’s
strain tensor which is not invariant under rotation in general and is
thus only valid for infinitesimal small deformations. The computa-
tionally costly application of the nonlinear form of Green’s strain
tensor for the simulation of large deformations is therefore elegantly
circumvented. This concept has been widely adopted by the visual
computing community where the simulation of large deformations
is a major concern [Müller et al. 2002]. Although the approach pre-
sented by Müller et al. [2002] has well known shortcomings [Chao
et al. 2010], we embed our stiffly accurate integrator in this formula-
tion in order to demonstrate its applicability in such kind of setups
as done by Michels et al. [2014] for the Gautschi-type exponential
integrator. For that, we consider the positions x = X − X0 as dis-
placements from the original positions X0. The matrix K in Eq. (1)
is then replaced by

KX 7→ RK(R−1X − X0),

in which R denotes a sparse rotation matrix [Müller et al. 2002]. We
set up the simulation of an elastic deformation of the Eiffel Tower
with stiffness constants k0 = 108 in the lower part. The stiffness
constants in the upper part are set up to k1 = 102 in a first simula-
tion, and to k2 = 104 in a second simulation. The girder network
describing the topology and geometry of the Eiffel Tower contains
5 000 nodes (N = 15 000). The runtimes needed by the different
methods in order to obtain a L2-error in position space which is less
than 10% are shown in Tab. 1(3a-3b). The ground truth is computed
using the classical Runge-Kutta method (RK4) with sufficiently tiny
time step sizes h = 10−10 s. The stiffly accurate integrator clearly
shows an advantageous behavior over the Gautschi-type exponen-
tial integrator and the Newton-Raphson procedure. In contrast to
the other methods, the runtime of the stiffly accurate integrator
does not significantly increase when the stiffness is increased from
k1 to k2.

4.4 Complex Stiff Systems
Densely packed fiber assemblies are canonical examples for complex
and stiff systems. They are ubiquitous complex interacting mechan-
ical systems like human hair, pillow infills made of wool, spaghetti,
cable looms, the bristles of a tooth or bog brush, fur, algae carpets,
or even tree roots. Consequently, their modeling and simulation has
been of interest in the visual computing community; see e.g. the
work of Kaufman et al. [2014] and references therein. In particular,
the problem of the numerical simulation of human hair has gained
special interest in the community. In this context, the Cosserat rod
model was introduced to the community by Pai [2002], and later

Fig. 4. Visualization of a co-rotational elastic deformation of the Eiffel Tower
simulated with the stiffly accurate integrator.

Bertails-Descoubes et al. [2006] presented the sophisticated Super-
Helix approach for the simulation of fibers. Another line of work
is based on systems of coupled oscillators. In this context, Selle et
al. [2008] was the first who simulated the dynamics of a thinned
out hair style with several thousand individual fibers. Although,
such coupled oscillator models are rather popular because of their
efficiency, it was complicated to produce physically accurate results
since realistic material parameters are hard to integrate without
running into numerical issues. This was recently addressed using a
cuboidal fiber model [Michels et al. 2015].
We employ the approach of Michels et al. [2015] here, since it

allows for the use of systems of coupled oscillators and realistic mate-
rial parameters. We employ a Young’s modulus of 3.6 · 105 Ncm−2, a
torsional modulus of 105 Ncm−2, and segment thicknesses between
0.04mm (tip) and 0.09mm (root), which are typical parameters for
female caucasian hair [Robbins 2012]. The hairstyle contains 60 000
individual fibers, each composed of between six and ten cuboidal
segments summing up to 480 000 cubes corresponding to 2 160 000
particles respectively N = 6 480 000 degrees of freedom. This results
in a complex, interacting, and inherently stiff mechanical system.
To avoid interpenetrations between the individual fibers among
themselves and with the head geometry, correction impulses of ap-
propriate magnitudes are applied [Bridson et al. 2002]. The system
is dampened using linear Rayleigh damping [Liu and Gorman 1995].
The dynamical behavior of the hair during a head shake simulated
with the stiffly accurate integrator is shown in Fig. 1. The corre-
sponding computational times can be found in Tab. 1(4). Whereas
the classical Newton-Raphson procedure requires around 80 h and
the Gautschi-type exponential integrator around 6 h to simulate
the hair dynamics of four seconds, the stiffly accurate integrator re-
quires only 54min in order compute a result of similar visual quality.
Please note, that all these computation times include around 23min
for the collision detection, which is accelerated using a hierarchy of
axis-aligned bounding boxes.
Similarly, in a second scene, we simulate a tooth brushing sce-

nario of three minutes. The scene contains 1 500 bristles, each con-
taining four cuboidal segment respectively 20 particles leading to
N = 90 000 degrees of freedom. We employ a Young’s modulus of
3.2 · 106 Ncm−2, a torsional modulus of 105 Ncm−2, and segment
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Fig. 5. Visualization of the simulation of tooth brushing carried out with
the stiffly accurate integrator. The plaque removal efficacy is stained using
the sequence of colors “blue (low), cyan, green, yellow, red (high)”.

thicknesses of 0.12mm. The result computedwith the stiffly accurate
integrator is shown in Fig. 5. The runtimes needed by the different
methods in order to obtain a L2-error in position space which is
less than 5% are shown in Tab. 1(5). The ground truth is computed
using the classical Runge-Kutta method (RK4) with sufficiently tiny
time step sizes h = 10−10 s. The stiffly accurate integrator clearly
outperforms the Gautschi-type exponential integrator by a factor of
over 22 and the Newton-Raphson procedure by a factor of almost
70.

4.5 Coupled Systems
Finally, we demonstrate the application of the our stiffly accurate
integrator in the context of a coupled system. For that a flagellated
microswimmer is set up by a fiber representing the centerline of
the flagellum. The fiber is modeled as described in the previous ex-
periments using a system of coupled oscillators. A constant torque
perpendicular to the flagellum’s base is applied to emulate the rota-
tion of a motor. As described by Cortez et al. [2004], we couple the
mechanical simulation of the flagellumwith a fluid simulation. Since
biologically microswimmers are usually located in highly viscous
fluid environments, it is sufficient to model the fluid flow as Stokes
flow, which can be solved analytically using the grid-free method
of regularized Stokeslets [Cortez 2001]. A monotrichous bacteria
swimming in a viscous fluid is simulated as illustrated in Fig. 6. The
stiffly accurate integrator speeds up the simulation by a factor of
over four compared to the Gautschi-type exponential integrator and
by a factor of over 23 compared to the Newton-Raphson procedure,
see Tab. 1(6). This example should be understood as a demonstration
of the applicability of the stiffly accurate method in the context of
two-way coupled fiber-fluid systems.

5 CONCLUSION
We have devised a new stiffly accurate integrator for the solution
of stiff elastodynamic problems governed by the second-order ordi-
nary differential equations of structural mechanics. This is based on
a mathematical reformulation of the underlying differential equa-
tions, an exponential treatment of the full nonlinear forcing operator
as opposed to more standard partially implicit or exponential ap-
proaches like Gautschi-type exponential integrators [Michels et al.
2014], and the utilization of the concept of stiff accuracy. As in the
case of Gautschi-type exponential integrators, the presented method
requires the evaluation of matrix functions, which is realized effi-
ciently by employing adaptive Krylov subspace projections. The
final method is highly competitive with respect to accuracy and
computation times as demonstrated with significant accelerations

on a broad spectrum of complex examples like deformable bod-
ies, textiles, girders, bristles, and human hair. The method is easily
parallelizable in order to exploit the power of modern massively
parallel hardware. Moreover, its applicability was demonstrated in
the context of co-rotational elasticity and two-way coupled fiber-
fluid systems. Whereas the performance of past methods is highly
dependent on the numerical stiffnesses of the underlying systems,
the new integrator is much more robust with respect to stiffness
increases. Moreover, these gains are not the result of nonphysical
ad hoc manipulations of the underlying integration scheme. Instead,
improved performance for highly stiff systems is an intrinsic prop-
erty of the presented stiffly accurate integrator. Next to the relevance
of the presented integrator for simulation scenarios where high ac-
curacy and speed are mandatory, its strong robustness with respect
to stiffness increases can be considered as one of its key features.

6 LIMITATIONS AND FUTURE WORK
Our work can be extended in various ways. A fine-grained par-
allel implementation on the GPU is likely to bring dramatically
improved performance, since carefully hand-coded routines can
significantly enhance speedup of such integrators. Although the
presented stiffly accurate integrator preserves energy with high
accuracy, it is not formally symplectic. The construction of efficient
symplectic exponential integrators is an open question and further
research is needed to determine if such methods can be built for
problems relevant to visual computing and whether they will bring
further improvements to the integration of these systems. We plan
to investigate whether further efficiency improvements of the new
stiffly accurate integrator are possible. A variable time step version
of the algorithm can result in computational savings. It is possible
that further optimizations of the coefficients of the stiffly accurate
exponential integrators can yield more efficiency. In addition, since
the development of algorithms for the efficient evaluation of matrix
function and vector products is currently an active area of research,
further efficiency gains could result from improvements to the adap-
tive Krylov algorithm portion of the method or from the utilization
of novel algorithms for these computations.

A INHOMOGENEOUS MASS DISTRIBUTIONS AND
NON-DIAGONALLY LUMPED MASS MATRICES

For the uniqueness of the square root
√
L, the matrix L = M−1K

must be symmetric and positive semidefinite. However, although
M is symmetric, an inhomogeneous mass distribution or a non-
diagonally lumped mass matrixM can violate this condition.
Therefore, in such cases, we integrate according to Michels et

al. [2014] instead of Eq. (2), the equivalent system

x̂′′(t ) + L̂x̂(t ) = ĝ(x̂(t )),

in which scaled coordinates, matrix, and nonlinearity are given by

x̂(t ) =
√
Mx(t ), L̂ =

√
M
−1
K
√
M
−1
, ĝ(x̂) =

√
M
−1
Mg

(√
M
−1
x̂
)
.

B STABILITY AND CONVERGENCE ANALYSIS
In the following, we prove the stability of the stiffly accurate scheme
(20). First, we rewrite the nonlinear system (5) in a more compact
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Fig. 6. Visualization of the simulation of a monotrichous bacteria swimming
in a viscous fluid carried out with the stiffly accurate integrator. The rotation
of the motor located at the back side of the bacteria’s head causes the
characteristic motion of the flagellum leading to amovement of the bacteria.

form
X′(t ) = F(X(t )) = JnX(t ) + Nn (X(t )) (22)

with nonlinearity

Nn (X) = F(X) − JnX = Rn (X) + F(X) − JnXn .

Using this form one can show that scheme (20) belongs to the class
of three-stage parallel exponential Rosenbrock methods [Luan and
Ostermann 2016], particularly when nodes c2 = 1/8 and c3 = 1/9
are used. We represent Xn+1 as

Xn+1 = ehJnXn + hb1 (hJn )Nn (Xn )

+ hb2 (hJn )Nn (Xn2) + hb3 (hJn )Nn (Xn3)
(23)

where b1 (hJn ) = φ1 (hJn ), b2 (hJn ) = 27648φ4 (hJn ) − 1024φ3 (hJn ),
and b3 (hJn ) = 1458φ3 (hJn ) − 34992φ4 (hJn ) by inserting

Fn = JnXn + Nn (Xn )

into scheme (20). The convergence proof (implying the stability)
of this scheme can be thus carried out in a similar way as done by
Hochbruck et al. [2009] or Luan and Ostermann [2014b]. However,
we now present a much shorter proof compared to these previous
contributions.
Let En+1 = Xn+1 − X(tn+1) denote the global error, i.e. the dif-

ference between the numerical and the exact solution of Eq. (22) at
time tn+1. Let en+1 = X̂n+1 −X(tn+1) denote the local error, i.e. the
difference between the numerical solution X̂n+1 after one step with
initial value being on the exact solution X(tn ) and the correspond-
ing exact solution of Eq. (22) at time tn+1. Since our method satisfies
the stiff order conditions for methods of order four, en+1 ∈ O (h5).
Next, we note that the global error can be estimated by the sum

of the propagated local errors ek = X̂k − X(tk ) (k = 1, . . . ,n + 1).
Therefore, in order to show that the numerical scheme (20) is stable,
the remaining task is to show the stability of the error propagation.
The main difficulty here is that Jn changes from step to step.

Clearly, En+1 = (Xn+1 − X̂n+1) + en+1. Taking a closer look at
Eq. (23) one can consider Xn+1 as a result of applying the discrete

operator D (hJn ) to Xn , where

D (hJn ) (Xn ) = ehJnXn + h
3∑
i=1

bi (hJn )Nn (Xni )

(with Xn1 = Xn ) and thus

Xn+1 = D (hJn ) (Xn ) =
n∏
j=0

D (hJn−j )X0. (24)

Similarly, we obtain

X̂n+1 = D (hJ̃n ) (X(tn ))

= D (hJ̃n ) (X̂n ) − D (hJ̃n ) (en ). (25)

Solving the recursion (25) and inserting the result and Eq. (24) into
En+1 gives

En+1 =
n∏
j=0

(
D (hJn−j ) − D (hJ̃n−j ))X0

+

n∑
i=0

n−i−1∏
j=0

D (hJ̃n−j )ei+1.

Thus the stability of the error propagation requires the boundedness
of

∏n−i−1
j=0 D (hJ̃n−j ). This can be shown using the stability bound

for the discrete evolution operators given in Hochbruck et al. [2009],


n−ν∏
j=0

eh Jn−j

≤ CS

for t0 ≤ tν ≤ tn ≤ tend with a constant CS uniform in k and n
despite the fact that Jn varies from step to step. Finally, it is clear
that 

n∏
j=0

(D (hJn−j ) − D (hJ̃n−j ))X0


≤ C ∥En ∥.

Combining this, we obtain

∥En+1∥ ≤ C ∥En ∥ +
n∑
i=0

Ch5.

Using the discrete Grönwall inequality, the error bound

∥En+1∥ ≤ Ch4

with a constant C independent of n and h can be derived.
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